Advertisement

Breast Cancer Research and Treatment

, Volume 120, Issue 3, pp 547–555 | Cite as

Silica-gold nanoshells as potential intraoperative molecular probes for HER2-overexpression in ex vivo breast tissue using near-infrared reflectance confocal microscopy

  • Lissett R. Bickford
  • Germaine Agollah
  • Rebekah Drezek
  • Tse-Kuan Yu
Preclinical study

Abstract

Obtaining negative margins is critical for breast cancer patients undergoing conservation therapy in order to reduce the reemergence of the original cancer. Currently, breast cancer tumor margins are examined in a pathology lab either while the patient is anesthetized or after the surgical procedure has been terminated. These current methods often result in cancer cells present at the surgical resection margin due to inadequate margin assessment at the point of care. Due to such limitations evident in current diagnoses, tools for increasing the accuracy and speed of tumor margin detection directly in the operating room are still needed. We are exploring the potential of using a nano-biophotonics system to facilitate intraoperative tumor margin assessment ex vivo at the cellular level. By combining bioconjugated silica-based gold nanoshells, which scatter light in the near-infrared, with a portable FDA-approved reflectance confocal microscope, we first validate the use of gold nanoshells as effective reflectance-based imaging probes by evaluating the contrast enhancement of three different HER2-overexpressing cell lines. Additionally, we demonstrate the ability to detect HER2-overexpressing cells in human tissue sections within 5 min of incubation time. This work supports the use of targeted silica-based gold nanoshells as potential real-time molecular probes for HER2-overexpression in human tissue.

Keywords

Nanoshells Reflectance confocal microscopy Breast cancer Molecular imaging Tumor margins Intraoperative detection 

Notes

Acknowledgments

We thank the Cooperative Human Tissue Network for providing fresh frozen tissue samples and Wendy Schober at MDACC for performing flow cytometry on all cell lines. This work was supported by a Department of Defense Congressionally Directed Breast Cancer Research Program Era of Hope Scholar Award to Rebekah Drezek and Tse-Kuan Yu, the Center for Biological and Environmental Nanotechnology (EEC-0118007 and EEC-0647452), and the John and Ann Doerr Fund for Computational Biomedicine.

References

  1. 1.
    Balch GC, Mithani SK, Simpson JF, Kelley MC (2005) Accuracy of intraoperative gross examination of surgical margin status in women undergoing partial mastectomy for breast malignancy. Am Surg 71(1):22–27PubMedGoogle Scholar
  2. 2.
    Gibson GR, Lesnikoski BA, Yoo J, Mott LA, Cady B, Barth RJ (2001) A comparison of ink-directed and traditional whole-cavity re-excision for breast lumpectomy specimens with positive margins. Ann Surg Oncol 8(9):693–704. doi: 10.1007/s10434-001-0693-1 CrossRefPubMedGoogle Scholar
  3. 3.
    Cabioglu N, Hunt KK, Singletary SE, Stephens TW, Marcy S, Meric F, Ross MI, Babiera GV, Ames FC, Kuerer HM (2003) Surgical decision making and factors determining a diagnosis of breast carcinoma in women presenting with nipple discharge. J Am Coll Surg 197(4):697–698. doi: 10.1016/S1072-7515(02)01606-X Google Scholar
  4. 4.
    Vicini FA, Goldstein NS, Pass H, Kestin LL (2004) Use of pathologic factors to assist in establishing adequacy of excision before radiotherapy in patients treated with breast-conserving therapy. Int J Radiat Oncol Biol Phys 60(1):86–94. doi: 10.1016/j.ijrob.2004.02.002 PubMedGoogle Scholar
  5. 5.
    Smitt MC, Nowels K, Carlson RW, Jeffrey SS (2003) Predictors of re-excision findings and recurrence after breast conservation. Int J Radiat Oncol Biol Phys 57(4):979–985. doi: 10.1016/S0360-3016(03)00740-5 PubMedGoogle Scholar
  6. 6.
    Abraham SC, Fox K, Fraker D, Solin L, Reynolds C (1999) Sampling of grossly benign re-excisions: a multidisciplinary approach to assessing adequacy. Am J Surg Pathol 23(3):316–322. doi: 10.1097/00000478-199903000-00011 CrossRefPubMedGoogle Scholar
  7. 7.
    Parrish A, Halama E, Tilli MT, Freedman M, Furth PA (2005) Reflectance confocal microscopy for characterization of mammary ductal structures and development of neoplasia in genetically engineered mouse models of breast cancer. J Biomed Opt 10(5):051602. doi: 10.1117/1.2065827 Google Scholar
  8. 8.
    Tilli MT, Parrish AR, Cotarla I, Jones LP, Johnson MD, Furth PA (2008) Comparison of mouse mammary gland imaging techniques and applications: reflectance confocal microscopy, GFP imaging, and ultrasound. BMC Cancer 8(21):1–15. doi: 10.1186/1471-2407-8-21 Google Scholar
  9. 9.
    Tilli MT, Cabrera MC, Parrish AR, Torre KM, Sidawy MK, Gallagher AL, Makariou E, Polin SA, Liu MC, Furth PA (2007) Real-time imaging and characterization of human breast tissue by reflectance confocal microscopy. J Biomed Opt 12(5):051901. doi: 10.1117/1.2799187 Google Scholar
  10. 10.
    Chen CSJ, Elias M, Busam K, Rajadhyaksha M, Marghoob AA (2005) Multimodal in vivo optical imaging, including confocal microscopy, facilitates presurgical margin mappling for clinically complex lentigo maligna melanoma. Br J Dermatol 153(5):1031–1036. doi: 10.1111/j.1365-2133.2005.06831.x CrossRefPubMedGoogle Scholar
  11. 11.
    Clark A, Gillenwater A, Alizadeh-Naderi R, El-Naggar A, Richards-Kortum R (2004) Detection and diagnosis of oral neoplasia with an optical coherence microscope. J Biomed Opt 9(6):1271–1280. doi: 10.1117/1.1805558 CrossRefPubMedGoogle Scholar
  12. 12.
    Zysk AM, Boppart SA (2006) Computational methods for analysis of human breast tumor tissue in optical coherence tomography images. J Biomed Opt 11(5):054015. doi: 10.1117/1.2358964 Google Scholar
  13. 13.
    Wilder-Smith P, Jung W, Brenner M, Osann K, Beydoun H, Messadi D, Chen Z (2004) In vivo optical coherence tomography for the diagnosis of oral malignancy. Lasers Surg Med 35(4):269–275. doi: 10.1002/lsm.20098 CrossRefPubMedGoogle Scholar
  14. 14.
    Cobb M, Chen Y, Bailey S, Kemp C, Li X (2006) Non-invasive imaging of carcinogen-induced early neoplasia using ultrahigh-resolution optical coherence tomography. Cancer Biomark 2(3–4):163–173PubMedGoogle Scholar
  15. 15.
    Zuluaga A, Follen M, Boiko I, Malpica A, Richards-Kortum R (2005) Optical coherence tomography: a pilot study of a new imaging technique for noninvasive examination of cervical tissue. Am J Obstet Gynecol 193(1):83–88. doi: 10.1016/j.ajog.2004.11.054 CrossRefPubMedGoogle Scholar
  16. 16.
    Boppart S, Brezinksi M, Pitris C, Fujimoto J (1998) Optical coherence tomography for neurosurgical imaging of human intracortical melanoma. Neurosurgery 43(4):834–841. doi: 10.1097/00006123-199810000-00068 CrossRefPubMedGoogle Scholar
  17. 17.
    Boppart SA (2006) Advances in contrast enhancement for optical coherence tomography. Conf Proc IEEE Eng Med Biol Soc 1:121–124. doi: 10.1109/IEMBS.2006.259366 CrossRefPubMedGoogle Scholar
  18. 18.
    Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, Richards-Kortum R (2003) Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res 63(9):1999–2004PubMedGoogle Scholar
  19. 19.
    Javier DJ, Nitin N, Levy M, Ellington A, Richards-Kortum R (2008) Aptamer-targeted gold nanoparticles as molecular-specific contrast agents for reflectance imaging. Bioconjug Chem 19(6):1309–1313. doi: 10.1021/bc8001248 CrossRefPubMedGoogle Scholar
  20. 20.
    Aaron J, Nitin N, Travis K, Kumar S, Collier T, Park SY, Jose-Yacaman M, Coghlan L, Follen M, Richards-Kortum R (2007) Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo. J Biomed Opt 12(3):034007. doi: 10.1117/1.2737351 Google Scholar
  21. 21.
    Kah JCY, Olivo MC, Lee CGL, Sheppard CJR (2008) Molecular contrast of EGFR expression using gold nanoparticles as a reflectance-based imaging probe. Mol Cell Probes 22(1):14–23. doi: 10.1016/j.mcp.2007.06.010 CrossRefPubMedGoogle Scholar
  22. 22.
    Nitin N, Javier DJ, Roblyer DM, Richards-Kortum R (2007) Widefield and high-resolution reflectance imaging of gold and silver nanospheres. J Biomed Opt 12(5):051505. doi: 10.1117/1.2800314 Google Scholar
  23. 23.
    Javier DJ, Nitin N, Roblyer D, Richards-Kortum R (2008) Metal-based nanorods as molecular-specific contrast agents for reflectance imaging in 3D tissues. J Nanophotonics 2(1):023506. doi: 10.1117/1.2927370 Google Scholar
  24. 24.
    Bickford LR, Chang J, Fu K, Sun J, Hu Y, Gobin AM, Yu T-K, Drezek RA (2008) Evaluation of immunotargeted gold nanoshells as rapid diagnostic imaging agents for HER2-overexpressing breast cancer cells: a time-based analysis. NanoBiotechnol. doi: 10.1007/s12030-008-9010-4 (online first)
  25. 25.
    Loo C, Lin A, Hirsch L, Lee MH, Barton J, Halas N, West J, Drezek R (2004) Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 3(1):33–40PubMedGoogle Scholar
  26. 26.
    Loo C, Hirsh L, Lee MH, Change E, West J, Halas N, Drezek R (2005) Gold nanoshell bioconjugates for molecular imaging in living cells. Opt Lett 30(9):1012–1014. doi: 10.1364/OL.30.001012 CrossRefPubMedGoogle Scholar
  27. 27.
    Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5(4):709–711. doi: 10.1021/nl050127s CrossRefPubMedGoogle Scholar
  28. 28.
    Fu K, Sun J, Bickford LR, Lin AWH, Halas NJ, Yu TK, Drezek RA (2008) Measurement of immunotargeted plasmonic nanoparticles’ cellular binding: a key factor in optimizing diagnostic efficacy. Nanotechnology 19:045103. doi: 10.1088/0957-4484/19/04/045103 CrossRefGoogle Scholar
  29. 29.
    Stöber W, Fink A (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69. doi: 10.1016/0021-9797(68)90272-5 CrossRefGoogle Scholar
  30. 30.
    Duff DG, Baiker A, Edwards PP (1993) A new hydrosol of gold clusters. 1. Formation and particle size variation. Langmuir 9(9):2301–2309. doi: 10.1021/la00033a010 CrossRefGoogle Scholar
  31. 31.
    Wang J, Yong WH, Sun Y, Vernier PT, Koeffler HP, Gundersen MA, Marcu L (2007) Receptor-targeted quantum dots: fluorescent probes for brain tumor diagnosis. J Biomed Opt 12(4):044021. doi: 10.1117/1.2764463 Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Lissett R. Bickford
    • 1
  • Germaine Agollah
    • 2
  • Rebekah Drezek
    • 1
    • 3
  • Tse-Kuan Yu
    • 1
    • 4
  1. 1.Department of BioengineeringRice UniversityHoustonUSA
  2. 2.Nanospectra Biosciences Inc.HoustonUSA
  3. 3.Department of Electrical and Computer EngineeringRice UniversityHoustonUSA
  4. 4.Department of Radiation OncologyThe University of Texas M.D. Anderson Cancer CenterHoustonUSA

Personalised recommendations