Breast Cancer Research and Treatment

, Volume 119, Issue 3, pp 773–786

NIP1/DUOXA1 expression in epithelial breast cancer cells: regulation of cell adhesion and actin dynamics

Brief Report


DUOXA1/NIP1, originally identified as a Numb-interacting protein, was recently shown to function as a maturation factor for the dual oxidase 1(DUOX1). In this study, we identified DUOXA1/NIP1 expression in breast cancer cells, observed high expression of DUOXA1 in non-invasive MCF7 cells and low expression in highly metastatic cells with impaired p53 functions linking the expression of DUOXA1 with p53. An inhibition of cell proliferation associated with upregulation of p21Cip1/WAF1 was observed in MDA-MB-231 cells following transfection of DUOXA1. The transient DUOXA1 overexpression also inhibited expression of cell-surface integrin αVβ5 and CD9, which is associated with impaired spreading ability. However, there was no difference in expression of these proteins in DUOX1-depleted cells. The observed effects coincided with an increase in reactive oxygen species (ROS) generation. Our data also demonstrate that DUOXA1 transient overexpression affected the cell–cell adhesion by modulating the actin cytoskeleton, and sensitized cells to doxorubicin.


DUOX1 DUOX1 maturation factor (DUOXA1/NIP1) ROS Breast cancer p53 CD9 Integrin 


  1. 1.
    Penta JS, Johnson FM, Wachsman JT, Copeland WC (2001) Mitochondrial DNA in human malignancy. Mutat Res 488:119–133. doi:10.1016/S1383-5742(01)00053-9 CrossRefPubMedGoogle Scholar
  2. 2.
    Fliss MS, Usadel H, Caballero OL, Wu L, Buta MR, Eleff SM, Jen J, Sidransky D (2000) Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science 287:2017–2019. doi:10.1126/science.287.5460.2017 CrossRefPubMedGoogle Scholar
  3. 3.
    Aykin-Burns N, Ahmad IM, Zhu Y, Oberley L, Spitz DR (2008) Increased levels of superoxide and hydrogen peroxide mediate the differential susceptibility of cancer cells vs. normal cells to glucose deprivation. Biochem J 418(1):29–37CrossRefGoogle Scholar
  4. 4.
    Desouki MM, Kulawiec M, Bansal S, Das GM, Singh KK (2005) Cross talk between mitochondria and superoxide generating NADPH oxidase in breast and ovarian tumors. Cancer Biol Ther 4:1367–1373PubMedCrossRefGoogle Scholar
  5. 5.
    Edens WA, Sharling L, Cheng G, Shapira R, Kinkade JM, Lee T, Edens HA, Tang X, Sullards C, Flaherty DB, Benian GM, Lambeth JD (2001) Tyrosine cross-linking of extracellular matrix is catalyzed by Duox, a multidomain oxidase/peroxidase with homology to the phagocyte oxidase subunit gp91phox. J Cell Biol 154:879–891. doi:10.1083/jcb.200103132 CrossRefPubMedGoogle Scholar
  6. 6.
    El Hassani RA, Benfares N, Caillou B, Talbot M, Sabourin JC, Belotte V, Morand S, Gnidehou S, Agnandji D, Ohayon R, Kaniewski J, Noel-Hudson MS, Bidart JM, Schlumberger M, Virion A, Dupuy C (2005) Dual oxidase2 is expressed all along the digestive tract. Am J Physiol Gastrointest Liver Physiol 288:G933–G942. doi:10.1152/ajpgi.00198.2004 CrossRefPubMedGoogle Scholar
  7. 7.
    Forteza R, Salathe M, Miot F, Forteza R, Conner GE (2005) Regulated hydrogen peroxide production by Duox in human airway epithelial cells. Am J Respir Cell Mol Biol 32:462–469. doi:10.1165/rcmb.2004-0302OC CrossRefPubMedGoogle Scholar
  8. 8.
    Geiszt M, Witta J, Baffi J, Lekstrom K, Leto TL (2003) Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense. FASEB J 17:1502–1504PubMedGoogle Scholar
  9. 9.
    Schwarzer C, Machen TE, Illek B, Fischer H (2004) NADPH oxidase-dependent acid production in airway epithelial cells. J Biol Chem 279:36454–36461. doi:10.1074/jbc.M404983200 CrossRefPubMedGoogle Scholar
  10. 10.
    Grasberger H, Refetoff S (2006) Identification of the maturation factor for dual oxidase. Evolution of an eukaryotic operon equivalent. J Biol Chem 281:18269–18272. doi:10.1074/jbc.C600095200 CrossRefPubMedGoogle Scholar
  11. 11.
    Qin H, Percival-Smith A, Li C, Jia CY, Gloor G, Li SS (2004) A novel transmembrane protein recruits numb to the plasma membrane during asymmetric cell division. J Biol Chem 279:11304–11312. doi:10.1074/jbc.M311733200 CrossRefPubMedGoogle Scholar
  12. 12.
    White DE, Muller WJ (2007) Multifaceted roles of integrins in breast cancer metastasis. J Mammary Gland Biol Neoplasia 12:135–142. doi:10.1007/s10911-007-9045-5 CrossRefPubMedGoogle Scholar
  13. 13.
    Taddei I, Faraldo MM, Teuliere J, Deugnier MA, Thiery JP, Glukhova MA (2003) Integrins in mammary gland development and differentiation of mammary epithelium. J Mammary Gland Biol Neoplasia 8:383–394. doi:10.1023/B:JOMG.0000017426.74915.b9 CrossRefPubMedGoogle Scholar
  14. 14.
    Moro L, Venturino M, Bozzo C, Silengo L, Altruda F, Beguinot L, Tarone G, Defilippi P (1998) Integrins induce activation of EGF receptor: role in MAP kinase induction and adhesion-dependent cell survival. EMBO J 17:6622–6632. doi:10.1093/emboj/17.22.6622 CrossRefPubMedGoogle Scholar
  15. 15.
    Elliott BE, Ekblom P, Pross H, Niemann A, Rubin K (1994) Anti-beta 1 integrin IgG inhibits pulmonary macrometastasis and the size of micrometastases from a murine mammary carcinoma. Cell Adhes Commun 1:319–332. doi:10.3109/15419069409097263 CrossRefPubMedGoogle Scholar
  16. 16.
    Khalili P, Arakelian A, Chen G, Plunkett ML, Beck I, Parry GC, Donate F, Shaw DE, Mazar AP, Rabbani SA (2006) A non-RGD-based integrin binding peptide (ATN-161) blocks breast cancer growth and metastasis in vivo. Mol Cancer Ther 5:2271–2280. doi:10.1158/1535-7163.MCT-06-0100 CrossRefPubMedGoogle Scholar
  17. 17.
    Borradori L, Sonnenberg A (1996) Hemidesmosomes: roles in adhesion, signaling and human diseases. Curr Opin Cell Biol 8:647–656. doi:10.1016/S0955-0674(96)80106-2 CrossRefPubMedGoogle Scholar
  18. 18.
    Geuijen CA, Sonnenberg A (2002) Dynamics of the alpha6beta4 integrin in keratinocytes. Mol Biol Cell 13:3845–3858. doi:10.1091/mbc.02-01-0601 CrossRefPubMedGoogle Scholar
  19. 19.
    Spinardi L, Rietdorf J, Nitsch L, Bono M, Tacchetti C, Way M, Marchisio PC (2004) A dynamic podosome-like structure of epithelial cells. Exp Cell Res 295:360–374. doi:10.1016/j.yexcr.2004.01.007 CrossRefPubMedGoogle Scholar
  20. 20.
    Lipscomb EA, Mercurio AM (2005) Mobilization and activation of a signaling competent alpha6beta4integrin underlies its contribution to carcinoma progression. Cancer Metastasis Rev 24:413–423. doi:10.1007/s10555-005-5133-4 CrossRefPubMedGoogle Scholar
  21. 21.
    Rabinovitz I, Mercurio AM (1997) The integrin alpha6beta4 functions in carcinoma cell migration on laminin-1 by mediating the formation and stabilization of actin-containing motility structures. J Cell Biol 139:1873–1884. doi:10.1083/jcb.139.7.1873 CrossRefPubMedGoogle Scholar
  22. 22.
    Rabinovitz I, Toker A, Mercurio AM (1999) Protein kinase C-dependent mobilization of the alpha6beta4 integrin from hemidesmosomes and its association with actin-rich cell protrusions drive the chemotactic migration of carcinoma cells. J Cell Biol 146:1147–1160. doi:10.1083/jcb.146.5.1147 CrossRefPubMedGoogle Scholar
  23. 23.
    Carter WO, Narayanan PK, Robinson JP (1994) Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells. J Leukoc Biol 55:253–258PubMedGoogle Scholar
  24. 24.
    Becker LB, vanden Hoek TL, Shao ZH, Li CQ, Schumacker PT (1999) Generation of superoxide in cardiomyocytes during ischemia before reperfusion. Am J Physiol 277:H2240–H2246PubMedGoogle Scholar
  25. 25.
    Ostrakhovitch EA, Cherian MG (2005) Inhibition of extracellular signal regulated kinase (ERK) leads to apoptosis inducing factor (AIF) mediated apoptosis in epithelial breast cancer cells: the lack of effect of ERK in p53 mediated copper induced apoptosis. J Cell Biochem 95:1120–1134. doi:10.1002/jcb.20484 CrossRefPubMedGoogle Scholar
  26. 26.
    Ohlsson R, Kanduri C, Whitehead J, Pfeifer S, Lobanenkov V, Feinberg AP (2003) Epigenetic variability and the evolution of human cancer. Adv Cancer Res 88:145–168. doi:10.1016/S0065-230X(03)88306-9 CrossRefPubMedGoogle Scholar
  27. 27.
    Dypbukt JM, Ankarcrona M, Burkitt M, Sjoholm A, Strom K, Orrenius S, Nicotera P (1994) Different prooxidant levels stimulate growth, trigger apoptosis, or produce necrosis of insulin-secreting RINm5F cells. The role of intracellular polyamines. J Biol Chem 269:30553–30560PubMedGoogle Scholar
  28. 28.
    Oberley LW, Oberley TD, Buettner GR (1981) Cell division in normal and transformed cells: the possible role of superoxide and hydrogen peroxide. Med Hypotheses 7:21–42. doi:10.1016/0306-9877(81)90018-9 CrossRefPubMedGoogle Scholar
  29. 29.
    Burdon RH, Rice-Evans C (1989) Free radicals and the regulation of mammalian cell proliferation. Free Radic Res Commun 6:345–358. doi:10.3109/10715768909087918 CrossRefPubMedGoogle Scholar
  30. 30.
    Malumbres M, Ortega S, Barbacid M (2000) Genetic analysis of mammalian cyclin-dependent kinases and their inhibitors. Biol Chem 381:827–838. doi:10.1515/BC.2000.105 CrossRefPubMedGoogle Scholar
  31. 31.
    Besson A, Dowdy SF, Roberts JM (2008) CDK inhibitors: cell cycle regulators and beyond. Dev Cell 14:159–169. doi:10.1016/j.devcel.2008.01.013 CrossRefPubMedGoogle Scholar
  32. 32.
    Denhardt DT, Guo X (1993) Osteopontin: a protein with diverse functions. FASEB J 7:1475–1482PubMedGoogle Scholar
  33. 33.
    Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: integrating signals from front to back. Science 302:1704–1709. doi:10.1126/science.1092053 CrossRefPubMedGoogle Scholar
  34. 34.
    Small JV, Stradal T, Vignal E, Rottner K (2002) The lamellipodium: where motility begins. Trends Cell Biol 12:112–120. doi:10.1016/S0962-8924(01)02237-1 CrossRefPubMedGoogle Scholar
  35. 35.
    Chin D, Boyle GM, Kane AJ, Theile DR, Hayward NK, Parson PG, Coman WB (2005) Invasion and metastasis markers in cancers. Br J Plast Surg 58:466–474. doi:10.1016/j.bjps.2004.12.025 CrossRefPubMedGoogle Scholar
  36. 36.
    Schlaepfer DD, Mitra SK (2004) Multiple connections link FAK to cell motility and invasion. Curr Opin Genet Dev 14:92–101. doi:10.1016/j.gde.2003.12.002 CrossRefPubMedGoogle Scholar
  37. 37.
    Keely PJ, Fong AM, Zutter MM, Santoro SA (1995) Alteration of collagen-dependent adhesion, motility, and morphogenesis by the expression of antisense alpha 2 integrin mRNA in mammary cells. J Cell Sci 108(Pt 2):595–607PubMedGoogle Scholar
  38. 38.
    Boudreau N, Sympson CJ, Werb Z, Bissell MJ (1995) Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science 267:891–893. doi:10.1126/science.7531366 CrossRefPubMedGoogle Scholar
  39. 39.
    Hodkinson PS, Mackinnon AC, Sethi T (2007) Extracellular matrix regulation of drug resistance in small-cell lung cancer. Int J Radiat Biol 83:733–741. doi:10.1080/09553000701570204 CrossRefPubMedGoogle Scholar
  40. 40.
    Aoudjit F, Vuori K (2001) Integrin signaling inhibits paclitaxel-induced apoptosis in breast cancer cells. Oncogene 20:4995–5004. doi:10.1038/sj.onc.1204554 CrossRefPubMedGoogle Scholar
  41. 41.
    Uhm JH, Dooley NP, Kyritsis AP, Rao JS, Gladson CL (1999) Vitronectin, a glioma-derived extracellular matrix protein, protects tumor cells from apoptotic death. Clin Cancer Res 5:1587–1594PubMedGoogle Scholar
  42. 42.
    Kouniavsky G, Khaikin M, Zvibel I, Zippel D, Brill S, Halpern Z, Papa M (2002) Stromal extracellular matrix reduces chemotherapy-induced apoptosis in colon cancer cell lines. Clin Exp Metastasis 19:55–60. doi:10.1023/A:1013880326925 CrossRefPubMedGoogle Scholar
  43. 43.
    Pia-Foschini M, Reis-Filho JS, Eusebi V, Lakhani SR (2003) Salivary gland-like tumours of the breast: surgical and molecular pathology. J Clin Pathol 56:497–506. doi:10.1136/jcp.56.7.497 CrossRefPubMedGoogle Scholar
  44. 44.
    Luxen S, Belinsky SA, Knaus UG (2008) Silencing of DUOX NADPH oxidases by promoter hypermethylation in lung cancer. Cancer Res 68:1037–1045. doi:10.1158/0008-5472.CAN-07-5782 CrossRefPubMedGoogle Scholar
  45. 45.
    Medema RH, Klompmaker R, Smits VA, Rijksen G (1998) p21waf1 can block cells at two points in the cell cycle, but does not interfere with processive DNA-replication or stress-activated kinases. Oncogene 16:431–441. doi:10.1038/sj.onc.1201558 CrossRefPubMedGoogle Scholar
  46. 46.
    Gartel AL, Tyner AL (2002) The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol Cancer Ther 1:639–649PubMedGoogle Scholar
  47. 47.
    Qiu X, Forman HJ, Schonthal AH, Cadenas E (1996) Induction of p21 mediated by reactive oxygen species formed during the metabolism of aziridinylbenzoquinones by HCT116 cells. J Biol Chem 271:31915–31921. doi:10.1074/jbc.271.40.24811 CrossRefPubMedGoogle Scholar
  48. 48.
    Tang D, Wu D, Hirao A, Lahti JM, Liu L, Mazza B, Kidd VJ, Mak TW, Ingram AJ (2002) ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53. J Biol Chem 277:12710–12717. doi:10.1074/jbc.M111598200 CrossRefPubMedGoogle Scholar
  49. 49.
    Zhu H, Zhang L, Wu S, Teraishi F, Davis JJ, Jacob D, Fang B (2004) Induction of S-phase arrest and p21 overexpression by a small molecule 2[[3-(2, 3-dichlorophenoxy)propyl] amino]ethanol in correlation with activation of ERK. Oncogene 23:4984–4992. doi:10.1038/sj.onc.1207645 CrossRefPubMedGoogle Scholar
  50. 50.
    Falcioni R, Kennel SJ, Giacomini P, Zupi G, Sacchi A (1986) Expression of tumor antigen correlated with metastatic potential of Lewis lung carcinoma and B16 melanoma clones in mice. Cancer Res 46:5772–5778PubMedGoogle Scholar
  51. 51.
    Koukoulis GK, Virtanen I, Korhonen M, Laitinen L, Quaranta V, Gould VE (1991) Immunohistochemical localization of integrins in the normal, hyperplastic, and neoplastic breast Correlations with their functions as receptors and cell adhesion molecules. Am J Pathol 139:787–799PubMedGoogle Scholar
  52. 52.
    Hynes RO, Lander AD (1992) Contact and adhesive specificities in the associations, migrations, and targeting of cells and axons. Cell 68:303–322. doi:10.1016/0092-8674(92)90472-O CrossRefPubMedGoogle Scholar
  53. 53.
    Smith JW, Vestal DJ, Irwin SV, Burke TA, Cheresh DA (1990) Purification and functional characterization of integrin alpha v beta 5. An adhesion receptor for vitronectin. J Biol Chem 265:11008–11013PubMedGoogle Scholar
  54. 54.
    Busk M, Pytela R, Sheppard D (1992) Characterization of the integrin alpha v beta 6 as a fibronectin-binding protein. J Biol Chem 267:5790–5796PubMedGoogle Scholar
  55. 55.
    Leavesley DI, Schwartz MA, Rosenfeld M, Cheresh DA (1993) Integrin beta 1- and beta 3-mediated endothelial cell migration is triggered through distinct signaling mechanisms. J Cell Biol 121:163–170. doi:10.1083/jcb.121.1.163 CrossRefPubMedGoogle Scholar
  56. 56.
    Menashi S, Dehem M, Souliac I, Legrand Y, Fridman R (1998) Density-dependent regulation of cell-surface association of matrix metalloproteinase-2 (MMP-2) in breast-carcinoma cells. Int J Cancer 75:259–265. doi:10.1002/(SICI)1097-0215(19980119)75:2<259::AID-IJC15>3.0.CO;2-8 CrossRefPubMedGoogle Scholar
  57. 57.
    Wong NC, Mueller BM, Barbas CF, Ruminski P, Quaranta V, Lin EC, Smith JW (1998) Alphav integrins mediate adhesion and migration of breast carcinoma cell lines. Clin Exp Metastasis 16:50–61. doi:10.1023/A:1006512018609 CrossRefPubMedGoogle Scholar
  58. 58.
    Chen Q, Manning CD, Millar H, McCabe FL, Ferrante C, Sharp C, Shahied-Arruda L, Doshi P, Nakada MT, Anderson GM (2008) CNTO 95, a fully human anti alphav integrin antibody, inhibits cell signaling, migration, invasion, and spontaneous metastasis of human breast cancer cells. Clin Exp Metastasis 25:139–148. doi:10.1007/s10585-007-9132-4 CrossRefPubMedGoogle Scholar
  59. 59.
    Gailit J, Colflesh D, Rabiner I, Simone J, Goligorsky MS (1993) Redistribution and dysfunction of integrins in cultured renal epithelial cells exposed to oxidative stress. Am J Physiol 264:F149–F157PubMedGoogle Scholar
  60. 60.
    Mori K, Shibanuma M, Nose K (2004) Invasive potential induced under long-term oxidative stress in mammary epithelial cells. Cancer Res 64:7464–7472. doi:10.1158/0008-5472.CAN-04-1725 CrossRefPubMedGoogle Scholar
  61. 61.
    Hemler ME (1998) Integrin associated proteins. Curr Opin Cell Biol 10:578–585. doi:10.1016/S0955-0674(98)80032-X CrossRefPubMedGoogle Scholar
  62. 62.
    Miyake M, Koyama M, Seno M, Ikeyama S (1991) Identification of the motility-related protein (MRP-1), recognized by monoclonal antibody M31–15, which inhibits cell motility. J Exp Med 174:1347–1354. doi:10.1084/jem.174.6.1347 CrossRefPubMedGoogle Scholar
  63. 63.
    Miyake M, Nakano K, Ieki Y, Adachi M, Huang CL, Itoi S, Koh T, Taki T (1995) Motility related protein 1 (MRP-1/CD9) expression: inverse correlation with metastases in breast cancer. Cancer Res 55:4127–4131PubMedGoogle Scholar
  64. 64.
    Miyake M, Inufusa H, Adachi M, Ishida H, Hashida H, Tokuhara T, Kakehi Y (2000) Suppression of pulmonary metastasis using adenovirally motility related protein-1 (MRP-1/CD9) gene delivery. Oncogene 19:5221–5226. doi:10.1038/sj.onc.1203919 CrossRefPubMedGoogle Scholar
  65. 65.
    Kim YJ, Yu JM, Joo HJ, Kim HK, Cho HH, Bae YC, Jung JS (2007) Role of CD9 in proliferation and proangiogenic action of human adipose-derived mesenchymal stem cells. Pflugers Arch 455:283–296. doi:10.1007/s00424-007-0285-4 CrossRefPubMedGoogle Scholar
  66. 66.
    Deissler H, Kuhn EM, Lang GE, Deissler H (2007) Tetraspanin CD9 is involved in the migration of retinal microvascular endothelial cells. Int J Mol Med 20:643–652PubMedGoogle Scholar
  67. 67.
    Charrin S, Le Naour F, Oualid M, Billard M, Faure G, Hanash SM, Boucheix C, Rubinstein E (2001) The major CD9 and CD81 molecular partner. Identification and characterization of the complexes. J Biol Chem 276:14329–14337PubMedGoogle Scholar
  68. 68.
    Kawakami Y, Kawakami K, Steelant WF, Ono M, Baek RC, Handa K, Withers DA, Hakomori S (2002) Tetraspanin CD9 is a “proteolipid”, and its interaction with alpha 3 integrin in microdomain is promoted by GM3 ganglioside, leading to inhibition of laminin-5-dependent cell motility. J Biol Chem 277:34349–34358. doi:10.1074/jbc.M200771200 CrossRefPubMedGoogle Scholar
  69. 69.
    Arbiser JL, Petros J, Klafter R, Govindajaran B, McLaughlin ER, Brown LF, Cohen C, Moses M, Kilroy S, Arnold RS, Lambeth JD (2002) Reactive oxygen generated by Nox1 triggers the angiogenic switch. Proc Natl Acad Sci USA 99:715–720. doi:10.1073/pnas.022630199 CrossRefPubMedGoogle Scholar
  70. 70.
    Ben Ze’ev A (1997) Cytoskeletal and adhesion proteins as tumor suppressors. Curr Opin Cell Biol 9:99–108. doi:10.1016/S0955-0674(97)80158-5 CrossRefPubMedGoogle Scholar
  71. 71.
    Button E, Shapland C, Lawson D (1995) Actin, its associated proteins and metastasis. Cell Motil Cytoskeleton 30:247–251. doi:10.1002/cm.970300402 CrossRefPubMedGoogle Scholar
  72. 72.
    Condeelis JS, Wyckoff JB, Bailly M, Pestell R, Lawrence D, Backer J, Segall JE (2001) Lamellipodia in invasion. Semin Cancer Biol 11:119–128. doi:10.1006/scbi.2000.0363 CrossRefPubMedGoogle Scholar
  73. 73.
    Song RX, Barnes CJ, Zhang Z, Bao Y, Kumar R, Santen RJ (2004) The role of Shc and insulin-like growth factor 1 receptor in mediating the translocation of estrogen receptor alpha to the plasma membrane. Proc Natl Acad Sci USA 101:2076–2081. doi:10.1073/pnas.0308334100 CrossRefPubMedGoogle Scholar
  74. 74.
    Hsia DA, Mitra SK, Hauck CR, Streblow DN, Nelson JA, Ilic D, Huang S, Li E, Nemerow GR, Leng J, Spencer KS, Cheresh DA, Schlaepfer DD (2003) Differential regulation of cell motility and invasion by FAK. J Cell Biol 160:753–767. doi:10.1083/jcb.200212114 CrossRefPubMedGoogle Scholar
  75. 75.
    Parsons JT (2003) Focal adhesion kinase: the first ten years. J Cell Sci 116:1409–1416. doi:10.1242/jcs.00373 CrossRefPubMedGoogle Scholar
  76. 76.
    Shain KH, Dalton WS (2001) Cell adhesion is a key determinant in de novo multidrug resistance (MDR): new targets for the prevention of acquired MDR. Mol Cancer Ther 1:69–78PubMedGoogle Scholar
  77. 77.
    Bergom C, Goel R, Paddock C, Gao C, Newman DK, Matsuyama S, Newman PJ (2006) The cell-adhesion and signaling molecule PECAM-1 is a molecular mediator of resistance to genotoxic chemotherapy. Cancer Biol Ther 5:1699–1707PubMedGoogle Scholar
  78. 78.
    Brozovic A, Majhen D, Roje V, Mikac N, Jakopec S, Fritz G, Osmak M, Ambriovic-Ristov A (2008) alpha(v)beta(3) Integrin-mediated drug resistance in human laryngeal carcinoma cells is caused by glutathione-dependent elimination of drug-induced reactive oxidative species. Mol Pharmacol 74:298–306. doi:10.1124/mol.107.043836 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  1. 1.Department of Biochemistry and Siebens Drake Medical Research Institute, Schulich School of Medicine and DentistryUniversity of Western OntarioLondonCanada
  2. 2.Department of ChemistryUniversity of Western OntarioLondonCanada

Personalised recommendations