Breast Cancer Research and Treatment

, Volume 119, Issue 1, pp 87–93 | Cite as

CASP8 D302H polymorphism delays the age of onset of breast cancer in BRCA1 and BRCA2 carriers

  • Sarai Palanca Suela
  • Eva Esteban Cardeñosa
  • Eva Barragán González
  • Inmaculada de Juan Jiménez
  • Isabel Chirivella González
  • Ángel Segura Huerta
  • Carmen Guillén Ponce
  • Eduardo Martínez de Dueñas
  • Joaquín Montalar Salcedo
  • Victoria Castel Sánchez
  • Pascual Bolufer GilabertEmail author
  • On Behalf of the Group for Assessment of Hereditary Cancer of Valencia Community
Preclinical study


The polymorphic genetic differences among individuals may modify the high risk for breast cancer (BC) and/or ovarian cancer (OC) susceptibility conferred by BRCA1 and BRCA2 mutations. In the present study we investigate the relevance of RAD51 −135C > G, TP53 R72P, NQO1*2 and CASP8 D302H polymorphisms as potential modifiers of BC and/or OC susceptibility conferred by these mutations. The study group encompasses 390 BRCA1/BRCA2 mutation carriers (182 affected with BC and/or OC and 208 unaffected) of 131 unrelated families studied in the Program of Genetic Counselling on Cancer of Valencia Community. The polymorphisms were detected in genomic DNA by ASRA method or real time PCR using fluorescently labeled probes. We found similar incidence of RAD51 −135C > G, TP53 R72P and NQO1*2 polymorphisms among affected and unaffected individuals considering BRCA1/BRCA2 mutations together and separately. However, the CASP8 D302H polymorphism was strongly associated with the absence of BC [OR = 3.41 (95% CI 1.33–8.78, P = 0.01)]. In fact, in the females with CASP8 D302H polymorphism the BC appeared at a median age of 58 in opposition to the 47 years observed for the wild type subjects (P = 0.03). Furthermore, the CASP8 D302H positive females showed a 50% probability of being free of BC by the age of 78 versus the 2% of the CASP8 negative ones. Our results support that the presence of the CASP8 D302H polymorphism diminishes the high risk of BC conferred by BRCA1 and BRCA2 mutations, making possible that some of the carriers could escape from suffering BC along their life span.


BRCA1/BRCA2 mutation carriers Breast cancer CASP8 D302H polymorphism 



This study has been performed with the financial support of grant AP 019/06 from the “Conselleria de Sanitat de la Generalitat Valenciana”. Sarai Palanca and Inmaculada de Juan (Bch Sc and Specialists in Clinical Analysis) were recipients of fellowships from the “Fundación para Investigación del Hospital Universitario La Fe”. We also should express our gratitude to Dr. Dolores Cuevas Cuerda (Jefa de Servicio de Protocolización e Integración Asistencial, Dirección de Asistencia Sanitaria, Consellería de Sanitat, Generalitat Valenciana) and Dolores Salas Trejo (Jefa de Servicio de la Oficina del Plan de Cáncer, Dirección General de Salud Pública, Consellería de Sanitat, Generalitat Valenciana) for her help and strong support given for the establishment and development of the Program of Genetic Counselling in Cancer of Valencia Community.


  1. 1.
    Boyley P, Ferlay J (2005) Cancer incidence and mortality in Europe 2004. Ann Oncol 16:481–488. doi: 10.1093/annonc/mdi098 CrossRefGoogle Scholar
  2. 2.
    Rowell S, Newman B, Boyd J et al (1994) Inherited predisposition to breast and ovarian cancer. Am J Hum Genet 55:861–865PubMedGoogle Scholar
  3. 3.
    Antoniou AC, Easton DF (2003) Polygenic inheritance of breast cancer: implications for design of association studies. Genet Epidemiol 25:190–202. doi: 10.1002/gepi.10261 CrossRefPubMedGoogle Scholar
  4. 4.
    Wooster R, Bignell G, Lancaster J et al (1995) Identification of the breast cancer susceptibility gene BRCA2. Nature 378:789–792. doi: 10.1038/378789a0 CrossRefPubMedGoogle Scholar
  5. 5.
    Antoniou A, Pharoah PD, Narod S et al (2003) Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet 72:1117–1130. doi: 10.1086/375033 CrossRefPubMedGoogle Scholar
  6. 6.
    Simchoni S, Friedman E, Kaufman B et al (2006) Familial clustering of site-specific cancer risks associated with BRCA1 and BRCA2 mutations in the Ashkenazi Jewish population. Proc Natl Acad Sci USA 103:3770–3774. doi: 10.1073/pnas.0511301103 CrossRefPubMedGoogle Scholar
  7. 7.
    Chenevix-Trench G, Milne RL, Antoniou AC et al (2007) An international initiative to identify genetic modifiers of cancer risk in BRCA1 and BRCA2 mutation carriers: the consortium of investigators of modifiers of BRCA1 and BRCA2 (CIMBA). Breast Cancer Res 9:104. doi: 10.1186/bcr1670 CrossRefPubMedGoogle Scholar
  8. 8.
    Dunning AM, Dunning AM, Healey CS et al (1999) A systematic review of genetic polymorphisms and breast cancer risk. Cancer Epidemiol Biomarkers Prev 8:843–854PubMedGoogle Scholar
  9. 9.
    Karran P (2000) DNA double strand break repair in mammalian cells. Curr Opin Genet Dev 10:144–150. doi: 10.1016/S0959-437X(00)00069-1 CrossRefPubMedGoogle Scholar
  10. 10.
    Wong AK, Pero R, Ormonde PA et al (1997) RAD51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene brca2. J Biol Chem 272:31941–31944. doi: 10.1074/jbc.272.51.31941 CrossRefPubMedGoogle Scholar
  11. 11.
    Scully R, Chen J, Plug A et al (1997) Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 88:265–275. doi: 10.1016/S0092-8674(00)81847-4 CrossRefPubMedGoogle Scholar
  12. 12.
    Levy-Lahad E, Lahad A, Eisenberg S et al (2001) A single nucleotide polymorphism in the RAD51 gene modifies cancer risk in BRCA2 but not BRCA1 carriers. Proc Natl Acad Sci USA 98:3232–3236. doi: 10.1073/pnas.051624098 CrossRefPubMedGoogle Scholar
  13. 13.
    Blasiak J, Przybylowska K, Czechowska A et al (2003) Analysis of the G/C polymorphism in the 5′-untranslated region of the RAD51 gene in breast cancer. Acta Biochim Pol 50:249–253PubMedGoogle Scholar
  14. 14.
    Antoniou AC, Sinilnikova OM, Simard J et al (2007) RAD51 135G > C modifies breast cancer risk among BRCA2 mutation carriers: results from a combined analysis of 19 studies. Am J Hum Genet 81:1186–1200. doi: 10.1086/522611 CrossRefPubMedGoogle Scholar
  15. 15.
    Olivier M, Eeles R, Hollstein M et al (2002) The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat 19:607–614. doi: 10.1002/humu.10081 CrossRefPubMedGoogle Scholar
  16. 16.
    Walker KK, Levine AJ (1996) Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc Natl Acad Sci USA 93:15335–15340. doi: 10.1073/pnas.93.26.15335 CrossRefPubMedGoogle Scholar
  17. 17.
    Buyru N, Tigli H, Dalay N (2003) P53 codon 72 polymorphism in breast cancer. Oncol Rep 10:711–714PubMedGoogle Scholar
  18. 18.
    Tommiska J, Eerola H, Heinonen M et al (2005) Breast cancer patients with p53 Pro72 homozygous genotype have a poorer survival. Clin Cancer Res 11:5098–5103. doi: 10.1158/1078-0432.CCR-05-0173 CrossRefPubMedGoogle Scholar
  19. 19.
    Ohayon T, Gershoni-Baruch R, Papa MZ et al (2005) The R72P P53 mutation is associated with familial breast cancer in Jewish women. Br J Cancer 92:1144–1148. doi: 10.1038/sj.bjc.6602451 CrossRefPubMedGoogle Scholar
  20. 20.
    Osorio A, Pollán M, Pita G et al (2008) An evaluation of the polymorphisms Ins16 bp and Arg72Pro in p53 as breast cancer risk modifiers in BRCA1 and BRCA2 mutation carriers. Br J Cancer 99:974–977. doi: 10.1038/sj.bjc.6604624 CrossRefPubMedGoogle Scholar
  21. 21.
    Costa S, Pinto D, Pereira D et al (2008) Importance of TP53 codon 72 and intron 3 duplication 16 bp polymorphisms in prediction of susceptibility on breast cancer. BMC Cancer 8:32. doi: 10.1186/1471-2407-8-32 CrossRefPubMedGoogle Scholar
  22. 22.
    Siegel D, Gustafson DL, Dehn DL et al (2004) NAD(P)H:quinone oxidoreductase 1: role as a superoxide scavenger. Mol Pharmacol 65:1238–1247. doi: 10.1124/mol.65.5.1238 CrossRefPubMedGoogle Scholar
  23. 23.
    Nebert DW, Roe AL, Vandale SE et al (2002) NAD(P)H:quinone oxidoreductase (NQO1) polymorphism, exposure to benzene, and predisposition to disease: a HuGE review. Genet Med 4:62–70. doi: 10.1097/00125817-200203000-00003 PubMedCrossRefGoogle Scholar
  24. 24.
    Asher G, Lotem J, Cohen B et al (2001) Regulation of p53 stability and p53-dependent apoptosis by NADH quinone oxidoreductase 1. Proc Natl Acad Sci USA 98:1188–1193. doi: 10.1073/pnas.021558898 CrossRefPubMedGoogle Scholar
  25. 25.
    Long DJ, Waikel RL, Wang XJ et al (2000) NAD(P)H:quinone oxidoreductase 1 deficiency increases susceptibility to benzo(a)pyrene-induced mouse skin carcinogenesis. Cancer Res 60:5913–5915PubMedGoogle Scholar
  26. 26.
    Larson RA, Wang Y, Banerjee M et al (1999) Prevalence of the inactivating 609C > T polymorphism in the NAD(P)H:quinone oxidoreductase (NQO1) gene in patients with primary and therapy-related myeloid leukemia. Blood 94:803–807PubMedGoogle Scholar
  27. 27.
    Bolufer P, Barragan E, Collado M et al (2006) Influence of genetic polymorphisms on the risk of developing leukemia and on disease progression. Leuk Res 30:1471–1491. doi: 10.1016/j.leukres.2006.01.016 CrossRefPubMedGoogle Scholar
  28. 28.
    Fagerholm R, Hofstetter B, Tommiska J et al (2008) NAD(P)H:quinone oxidoreductase 1 NQO1*2 genotype (P187S) is a strong prognostic and predictive factor in breast cancer. Nat Genet 40:844–853. doi: 10.1038/ng.155 CrossRefPubMedGoogle Scholar
  29. 29.
    Siegelmann-Danieli N, Buetow KH (2002) Significance of genetic variation at the glutathione S-transferase M1 and NAD(P)H:quinone oxidoreductase 1 detoxification genes in breast cancer development. Oncology 62:39–45. doi: 10.1159/000048245 CrossRefPubMedGoogle Scholar
  30. 30.
    Cox A, Dunning AM, Garcia-Closas M et al (2007) A common coding variant in CASP8 is associated with breast cancer risk. Nat Genet 39:352–358. doi: 10.1038/ng1981 CrossRefPubMedGoogle Scholar
  31. 31.
    Hengartner MO (2002) The biochemistry of apoptosis. Nature 407:770–776. doi: 10.1038/35037710 CrossRefGoogle Scholar
  32. 32.
    Evan GI, Vousden KH (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411:342–348. doi: 10.1038/35077213 CrossRefPubMedGoogle Scholar
  33. 33.
    MacPherson G, Healey CS, Teare MD et al (2004) Association of a common variant of the CASP8 gene with reduced risk of breast cancer. J Natl Cancer Inst 96:1866–1869PubMedCrossRefGoogle Scholar
  34. 34.
    Frank B, Bermejo JL, Hemminki K et al (2005) Re: association of a common variant of the CASP8 gene with reduced risk of breast cancer. J Natl Cancer Inst 97:1012–1013PubMedGoogle Scholar
  35. 35.
    The Breast Cancer Information Core Database BIC. Accessed 1 Jan 2009
  36. 36.
    Ganguly A, Rock MJ, Prockop DJ (1993) Conformation-sensitive gel electrophoresis for rapid detection of single-base differences in double-stranded PCR products and DNA fragments: evidence for solvent-induced bends in DNA heteroduplexes. Proc Natl Acad Sci USA 90:10325–10329. doi: 10.1073/pnas.90.21.10325 CrossRefPubMedGoogle Scholar
  37. 37.
    Todd AV, Ireland CM, Radloff TJ et al (1991) Analysis of N-ras gene mutations in acute myeloid leukemia by allele specific restriction analysis. Am J Hematol 38:207–213. doi: 10.1002/ajh.2830380310 CrossRefPubMedGoogle Scholar
  38. 38.
    Osorio A, Martinez-Delgado B, Pollan M et al (2006) A haplotype containing the p53 polymorphisms Ins16 bp and Arg72Pro modifies cancer risk in BRCA2 mutation carriers. Hum Mutat 27:242–248. doi: 10.1002/humu.20283 CrossRefPubMedGoogle Scholar
  39. 39.
    Harth V, Brüning T, Abel J et al (2001) Real-time genotyping of cytochrome P4501A1 A4889G and T6235C polymorphisms. Mol Cell Probes 15:93–97. doi: 10.1006/mcpr.2001.0349 CrossRefPubMedGoogle Scholar
  40. 40.
    Kaplan EL, Meier P (1958) Nonparametric estimations from incomplete observations. J Am Stat Assoc 53:457–481. doi: 10.2307/2281868 CrossRefGoogle Scholar
  41. 41.
    Mantel N (1966) Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother Rep 50:163–170PubMedGoogle Scholar
  42. 42.
    Frank B, Hemminki K, Wappenschmidt B et al (2006) Association of the CASP10 V410I variant with reduced familial breast cancer risk and interaction with the CASP8 D302H variant. Carcinogenesis 27:606–609. doi: 10.1093/carcin/bgi248 CrossRefPubMedGoogle Scholar
  43. 43.
    De Vecchi G, Verderio P, Pizzamiglio S, et al. (2008) Evidences for association of the CASP8 −652 6N del promoter polymorphism with age at diagnosis in familial breast cancer cases. Breast Cancer Res Treat (in press)Google Scholar
  44. 44.
    Sun T, Gao Y, Tan W et al (2007) A six-nucleotide insertion-deletion polymorphism in the CASP8 promoter is associated with susceptibility to multiple cancers. Nat Genet 39:605–613. doi: 10.1038/ng2030 CrossRefPubMedGoogle Scholar
  45. 45.
    Ramus SJ, Vierkant RA, Johnatty SE et al (2008) Consortium analysis of 7 candidate SNPs for ovarian cancer. Int J Cancer 123:380–388. doi: 10.1002/ijc.23448 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Sarai Palanca Suela
    • 1
    • 6
  • Eva Esteban Cardeñosa
    • 1
    • 6
  • Eva Barragán González
    • 1
    • 6
  • Inmaculada de Juan Jiménez
    • 1
    • 6
  • Isabel Chirivella González
    • 2
  • Ángel Segura Huerta
    • 3
    • 6
  • Carmen Guillén Ponce
    • 4
  • Eduardo Martínez de Dueñas
    • 5
  • Joaquín Montalar Salcedo
    • 6
  • Victoria Castel Sánchez
    • 6
  • Pascual Bolufer Gilabert
    • 1
    • 6
    • 7
    Email author
  • On Behalf of the Group for Assessment of Hereditary Cancer of Valencia Community
  1. 1.Molecular Biology Laboratory (Service of Analytical Chemistry)Hospital Universitario La FeValenciaSpain
  2. 2.Unit of Genetic Counselling in CancerHospital Clínico UniversitarioValenciaSpain
  3. 3.Unit of Genetic Counselling in CancerHospital Universitario La FeValenciaSpain
  4. 4.Unit of Genetic Counselling in CancerHospital General de ElcheAlicanteSpain
  5. 5.Unit of Genetic Counselling in CancerConsorcio Hospital ProvincialCastellónSpain
  6. 6.Group of Clinical and Translational Research in CancerHospital Universitario La FeValenciaSpain
  7. 7.Laboratorio de Biología Molecular, Escuela de Enfermería 7ª plantaHospital Universitario La FeValenciaSpain

Personalised recommendations