Breast Cancer Research and Treatment

, Volume 113, Issue 3, pp 545–551 | Cite as

Analysis of FANCB and FANCN/PALB2 Fanconi Anemia genes in BRCA1/2-negative Spanish breast cancer families

  • María J. García
  • Victoria Fernández
  • Ana Osorio
  • Alicia Barroso
  • Gemma LLort
  • Conxi Lázaro
  • Ignacio Blanco
  • Trinidad Caldés
  • Miguel de la Hoya
  • Teresa Ramón y Cajal
  • Carmen Alonso
  • María-Isabel Tejada
  • Carlos San Román
  • Luis Robles-Díaz
  • Miguel Urioste
  • Javier Benítez
Epidemiology

Abstract

Recent reports have shown that mutations in the FANCJ/BRIP1 and FANCN/PALB2 Fanconi Anemia (FA) genes confer a moderate breast cancer risk. Discussion has been raised on the phenotypic characteristics of the PALB2-associated families and tumors. The role of FANCB in breast cancer susceptibility has not been tested to date. Likewise PALB2 mutation frequency has not been studied in Spanish population. We analyzed the complete coding sequence and splicing sites of FANCB and PALB2 in 95 index cases of BRCA1/2-negative Spanish breast cancer families. We also performed an exhaustive screening of three previously described rare but recurrent PALB2 mutations in 725 additional probands. Pathogenic changes were not detected in FANCB. We found a novel PALB2 truncating mutation c.1056_1057delGA (p.K353IfsX7) in one of the 95 screened patients, accounting for a mutation frequency of 1% in our series. Further comprehensive screening of the novel mutation and of previously reported rare but recurrent PALB2 mutations did not reveal any carrier patient. We report the first example of LOH occurring in a PALB2-associated tumor. Our results rule out a major contribution of FANCB to hereditary breast cancer. Our data are consistent with the notion of individually rare PALB2 mutations, lack of mutational hot-spots in the gene and existence of between-population disease-allele heterogeneity. We show evidence that PALB2 loss of function might also conform to the inactivation model of a classic tumor-suppressor gene and present data that adds to the clinically relevant discussion about the existence of a PALB2-breast cancer phenotype.

Keywords

FANCN/PALB2 FANCB Fanconi Anemia Genotypic–phenotypic correlation Hereditary breast cancer PALB2 tumor 

Supplementary material

10549_2008_9945_MOESM1_ESM.pdf (695 kb)
(PDF 694 kb)

References

  1. 1.
    Joenje H, Patel KJ (2001) The emerging genetic and molecular basis of Fanconi anaemia. Nat Rev Genet 2:446–457PubMedCrossRefGoogle Scholar
  2. 2.
    Smogorzewska A, Matsuoka S, Vinciguerra P et al (2007) Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell 129:289–301PubMedCrossRefGoogle Scholar
  3. 3.
    Mathew CG (2006) Fanconi anaemia genes and susceptibility to cancer. Oncogene 25:5875–5884PubMedCrossRefGoogle Scholar
  4. 4.
    Whitney MA, Saito H, Jakobs PM et al (1993) A common mutation in the FACC gene causes Fanconi anaemia in Ashkenazi Jews. Nat Genet 4:202–205PubMedCrossRefGoogle Scholar
  5. 5.
    Callen E, Casado JA, Tischkowitz MD et al (2005) A common founder mutation in FANCA underlies the world’s highest prevalence of Fanconi anemia in Gypsy families from Spain. Blood 105:1946–1949PubMedCrossRefGoogle Scholar
  6. 6.
    Wang W (2007) Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat Rev Genet 8:735–748PubMedCrossRefGoogle Scholar
  7. 7.
    Howlett NG, Taniguchi T, Olson S et al (2002) Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297:606–609PubMedCrossRefGoogle Scholar
  8. 8.
    Seal S, Barfoot R, Jayatilake H et al (2003) Evaluation of Fanconi Anemia genes in familial breast cancer predisposition. Cancer Res 63:8596–8599PubMedGoogle Scholar
  9. 9.
    Luo L, Lei H, Du Q et al (2002) No mutations in the BACH1 gene in BRCA1 and BRCA2 negative breast-cancer families linked to 17q22. Int J Cancer 98:638–639PubMedCrossRefGoogle Scholar
  10. 10.
    Karppinen SM, Vuosku J, Heikkinen K et al (2003) No evidence of involvement of germline BACH1 mutations in Finnish breast and ovarian cancer families. Eur J Cancer 39:366–371PubMedCrossRefGoogle Scholar
  11. 11.
    Vahteristo P, Yliannala K, Tamminen A et al (2006) BACH1 Ser919Pro variant and breast cancer risk. BMC Cancer 6:19PubMedCrossRefGoogle Scholar
  12. 12.
    Lewis AG, Flanagan J, Marsh A et al (2005) Mutation analysis of FANCD2, BRIP1/BACH1, LMO4 and SFN in familial breast cancer. Breast Cancer Res 7:R1005–1016PubMedCrossRefGoogle Scholar
  13. 13.
    Seal S, Thompson D, Renwick A et al (2006) Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet 38:1239–1241PubMedCrossRefGoogle Scholar
  14. 14.
    Xia B, Dorsman JC, Ameziane N et al (2007) Fanconi anemia is associated with a defect in the BRCA2 partner PALB2. Nat Genet 39:159–161PubMedCrossRefGoogle Scholar
  15. 15.
    Reid S, Schindler D, Hanenberg H et al (2007) Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat Genet 39:162–164PubMedCrossRefGoogle Scholar
  16. 16.
    Rahman N, Seal S, Thompson D et al (2007) PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet 39:165–167PubMedCrossRefGoogle Scholar
  17. 17.
    Tischkowitz M, Xia B, Sabbaghian N et al (2007) Analysis of PALB2/FANCN-associated breast cancer families. Proc Natl Acad Sci USA 104:6788–6793PubMedCrossRefGoogle Scholar
  18. 18.
    Erkko H, Xia B, Nikkila J et al (2007) A recurrent mutation in PALB2 in Finnish cancer families. Nature 446:316–319PubMedCrossRefGoogle Scholar
  19. 19.
    Foulkes WD, Ghadirian P, Akbari MR et al (2007) Identification of a novel truncating PALB2 mutation and analysis of its contribution to early-onset breast cancer in French-Canadian women. Breast Cancer Res. doi:10.1186/bcr1828. (in press)Google Scholar
  20. 20.
    Milne RL, Ribas G, Gonzalez-Neira A et al (2006) ERCC4 associated with breast cancer risk: a two-stage case-control study using high-throughput genotyping. Cancer Res 66:9420–9427PubMedCrossRefGoogle Scholar
  21. 21.
    Llort G, Munoz CY, Tuser MP et al (2002) Low frequency of recurrent BRCA1 and BRCA2 mutations in Spain. Hum Mutat 19:307PubMedCrossRefGoogle Scholar
  22. 22.
    Diez O, Osorio A, Duran M et al (2003) Analysis of BRCA1 and BRCA2 genes in Spanish breast/ovarian cancer patients: a high proportion of mutations unique to Spain and evidence of founder effects. Hum Mutat 22:301–312PubMedCrossRefGoogle Scholar
  23. 23.
    Osorio A, Barroso A, Martinez B et al (2000) Molecular analysis of the BRCA1 and BRCA2 genes in 32 breast and/or ovarian cancer Spanish families. Br J Cancer 82:1266–1270PubMedCrossRefGoogle Scholar
  24. 24.
    de la Hoya M, Perez-Segura P, Van Orsouw N et al (2001) Spanish family study on hereditary breast and/or ovarian cancer: analysis of the BRCA1 gene. Int J Cancer 91:137–140CrossRefGoogle Scholar
  25. 25.
    Beristain E, Martinez-Bouzas C, Guerra I et al (2007) Differences in the frequency and distribution of BRCA1 and BRCA2 mutations in breast/ovarian cancer cases from the Basque country with respect to the Spanish population: implications for genetic counselling. Breast Cancer Res Treat 106:255–262PubMedCrossRefGoogle Scholar
  26. 26.
    den Dunnen JT, Paalman MH (2003) Standardizing mutation nomenclature: why bother? Hum Mutat 22:181–182CrossRefGoogle Scholar
  27. 27.
    den Dunnen JT, Antonarakis SE (2000) Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum Mutat 15:7–12CrossRefGoogle Scholar
  28. 28.
    Rahman N, Scott RH (2007) Cancer genes associated with phenotypes in monoallelic and biallelic mutation carriers: new lessons from old players. Hum Mol Genet 16 Spec No 1:R60–R66Google Scholar
  29. 29.
    Berwick M, Satagopan JM, Ben-Porat L et al (2007) Genetic heterogeneity among Fanconi anemia heterozygotes and risk of cancer. Cancer Res 67:9591–9596PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • María J. García
    • 1
    • 2
  • Victoria Fernández
    • 1
  • Ana Osorio
    • 1
  • Alicia Barroso
    • 1
  • Gemma LLort
    • 3
  • Conxi Lázaro
    • 4
  • Ignacio Blanco
    • 3
  • Trinidad Caldés
    • 5
  • Miguel de la Hoya
    • 5
  • Teresa Ramón y Cajal
    • 6
  • Carmen Alonso
    • 6
  • María-Isabel Tejada
    • 7
  • Carlos San Román
    • 8
  • Luis Robles-Díaz
    • 9
  • Miguel Urioste
    • 1
  • Javier Benítez
    • 1
    • 2
  1. 1.Group of Human GeneticsHuman Cancer Genetics Program, Spanish National Cancer Centre (CNIO)MadridSpain
  2. 2.Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)Instituto de Salud Carlos IIIMadridSpain
  3. 3.Genetic Counseling Unit, Prevention and Cancer Control DepartmentCatalan Institute of Oncology (ICO)L’Hospitalet, BarcelonaSpain
  4. 4.Translational Research LaboratoryCatalan Institute of Oncology (ICO)L’Hospitalet, BarcelonaSpain
  5. 5.Laboratory of Molecular OncologySan Carlos University HospitalMadridSpain
  6. 6.Service of Medical OncologyLa Santa Creu i Sant Pau HospitalBarcelonaSpain
  7. 7.Molecular Genetics LaboratoryCruces HospitalBaracaldo, BilbaoSpain
  8. 8.Genetics DepartmentRamón y Cajal HospitalMadridSpain
  9. 9.Oncology DepartmentDoce de Octubre HospitalMadridSpain

Personalised recommendations