Breast Cancer Research and Treatment

, Volume 113, Issue 2, pp 239–249 | Cite as

Gene expression meta-analysis identifies chromosomal regions and candidate genes involved in breast cancer metastasis

Preclinical Study

Abstract

Breast cancer cells exhibit complex karyotypic alterations causing deregulation of numerous genes. Some of these genes are probably causal for cancer formation and local growth whereas others are causal for the various steps of metastasis. In a fraction of tumors deregulation of the same genes might be caused by epigenetic modulations, point mutations or the influence of other genes. We have investigated the relation of gene expression and chromosomal position, using eight datasets including more than 1200 breast tumors, to identify chromosomal regions and candidate genes possibly causal for breast cancer metastasis. By use of “Gene Set Enrichment Analysis” we have ranked chromosomal regions according to their relation to metastasis. Overrepresentation analysis identified regions with increased expression for chromosome 1q41–42, 8q24, 12q14, 16q22, 16q24, 17q12–21.2, 17q21–23, 17q25, 20q11, and 20q13 among metastasizing tumors and reduced gene expression at 1p31–21, 8p22–21, and 14q24. By analysis of genes with extremely imbalanced expression in these regions we identified DIRAS3 at 1p31, PSD3, LPL, EPHX2 at 8p21–22, and FOS at 14q24 as candidate metastasis suppressor genes. Potential metastasis promoting genes includes RECQL4 at 8q24, PRMT7 at 16q22, GINS2 at 16q24, and AURKA at 20q13.

Keywords

Metastasis Distant metastasis Metastasis genes Causal genes Breast cancer Somatic mutations Copy number Microarray Gene expression profiling 

Supplementary material

10549_2008_9927_MOESM1_ESM.ppt (556 kb)
(PPT 556 kb)

References

  1. 1.
    Thomassen M, Tan Q, Eiriksdottir F, Bak M, Cold S, Kruse TA (2007) Prediction of metastasis from low-malignant breast cancer by gene expression profiling. Int J Cancer 120:1070–1075PubMedCrossRefGoogle Scholar
  2. 2.
    Huang E, Cheng SH, Dressman H, Pittman J, Tsou MH, Horng CF et al (2003) Gene expression predictors of breast cancer outcomes. Lancet 361:1590–1596PubMedCrossRefGoogle Scholar
  3. 3.
    Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, Jazaeri A et al (2003) Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci U S A 100:10393–10398PubMedCrossRefGoogle Scholar
  4. 4.
    Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J et al (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98:262–272PubMedCrossRefGoogle Scholar
  5. 5.
    Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365:671–679PubMedGoogle Scholar
  6. 6.
    van de Vijver, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009PubMedCrossRefGoogle Scholar
  7. 7.
    Miller LD, Smeds J, George J, Vega VB, Vergara L, Ploner A et al (2005) An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci U S A 102:13550–13555PubMedCrossRefGoogle Scholar
  8. 8.
    Calza S, Hall P, Auer G, Bjohle J, Klaar S, Kronenwett U et al (2006) Intrinsic molecular signature of breast cancer in a population-based cohort of 412 patients. Breast Cancer Res 8:R34PubMedCrossRefGoogle Scholar
  9. 9.
    Tan Q, Thomassen M, Kruse TA (2007) Feature selection for predicting tumor metastases in microarray experiments using paired design. Cancer Inform 2:133–138Google Scholar
  10. 10.
    Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550PubMedCrossRefGoogle Scholar
  11. 11.
    Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J et al (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 30:e15PubMedCrossRefGoogle Scholar
  12. 12.
    Dong M, How T, Kirkbride KC, Gordon KJ, Lee JD, Hempel N et al (2007) The type III TGF-beta receptor suppresses breast cancer progression. J Clin Invest 117:206–217PubMedCrossRefGoogle Scholar
  13. 13.
    Ragnarsson G, Eiriksdottir G, Johannsdottir JT, Jonasson JG, Egilsson V, Ingvarsson S: (1999) Loss of heterozygosity at chromosome 1p in different solid human tumours: association with survival. Br J Cancer 79:1468–1474PubMedCrossRefGoogle Scholar
  14. 14.
    Borg A, Zhang QX, Olsson H, Wenngren E (1992) Chromosome 1 alterations in breast cancer: allelic loss on 1p and 1q is related to lymphogenic metastases and poor prognosis. Genes Chromosomes Cancer 5:311–320PubMedCrossRefGoogle Scholar
  15. 15.
    Janssen EA, Baak JP, Guervos MA, van Diest PJ, Jiwa M, Hermsen MA (2003) In lymph node-negative invasive breast carcinomas, specific chromosomal aberrations are strongly associated with high mitotic activity and predict outcome more accurately than grade, tumour diameter, and oestrogen receptor. J Pathol 201:555–561PubMedCrossRefGoogle Scholar
  16. 16.
    Morikawa A, Williams TY, Dirix L, Colpaert C, Goodman M, Lyles RH et al (2005) Allelic imbalances of chromosomes 8p and 18q and their roles in distant relapse of early stage, node-negative breast cancer. Breast Cancer Res 7:R1051–R1057PubMedCrossRefGoogle Scholar
  17. 17.
    Isola JJ, Kallioniemi OP, Chu LW, Fuqua SA, Hilsenbeck SG, Osborne CK et al (1995) Genetic aberrations detected by comparative genomic hybridization predict outcome in node-negative breast cancer. Am J Pathol 147:905–911PubMedGoogle Scholar
  18. 18.
    Al-Kuraya K, Schraml P, Torhorst J, Tapia C, Zaharieva B, Novotny H et al (2004) Prognostic relevance of gene amplifications and coamplifications in breast cancer. Cancer Res 64:8534–8540PubMedCrossRefGoogle Scholar
  19. 19.
    Karlsson E, Danielsson A, Delle U, Olsson B, Karlsson P, Helou K (2007) Chromosomal changes associated with clinical outcome in lymph node-negative breast cancer. Cancer Genet Cytogenet 172:139–146PubMedCrossRefGoogle Scholar
  20. 20.
    Rayburn E, Zhang R, He J, Wang H (2005) MDM2 and human malignancies: expression, clinical pathology, prognostic markers, and implications for chemotherapy. Curr Cancer Drug Targets 5:27–41PubMedCrossRefGoogle Scholar
  21. 21.
    Wang ZC, Lin M, Wei LJ, Li C, Miron A, Lodeiro G et al (2004) Loss of heterozygosity and its correlation with expression profiles in subclasses of invasive breast cancers. Cancer Res 64:64–71PubMedCrossRefGoogle Scholar
  22. 22.
    Martin MD, Fischbach K, Osborne CK, Mohsin SK, Allred DC, O’Connell P (2001) Loss of heterozygosity events impeding breast cancer metastasis contain the MTA1 gene. Cancer Res 61:3578–3580PubMedGoogle Scholar
  23. 23.
    Hicks J, Krasnitz A, Lakshmi B, Navin NE, Riggs M, Leibu E et al (2006) Novel patterns of genome rearrangement and their association with survival in breast cancer. Genome Res 16:1465–1479PubMedCrossRefGoogle Scholar
  24. 24.
    Hansen LL, Yilmaz M, Overgaard J, Andersen J, Kruse TA (1998) Allelic loss of 16q23.2–24.2 is an independent marker of good prognosis in primary breast cancer. Cancer Res 58:2166–2169PubMedGoogle Scholar
  25. 25.
    Wennmalm K, Calza S, Ploner A, Hall P, Bjohle J, Klaar S et al (2007) Gene expression in 16q is associated with survival and differs between Sorlie breast cancer subtypes. Genes Chromosomes Cancer 46:87–97PubMedCrossRefGoogle Scholar
  26. 26.
    Fridlyand J, Snijders AM, Ylstra B, Li H, Olshen A, Segraves R et al (2006) Breast tumor copy number aberration phenotypes and genomic instability. BMC Cancer 6:96PubMedCrossRefGoogle Scholar
  27. 27.
    Parssinen J, Kuukasjarvi T, Karhu R, Kallioniemi A (2007) High-level amplification at 17q23 leads to coordinated overexpression of multiple adjacent genes in breast cancer. Br J CancerGoogle Scholar
  28. 28.
    Letessier A, Sircoulomb F, Ginestier C, Cervera N, Monville F, Gelsi-Boyer V et al (2006) Frequency, prognostic impact, and subtype association of 8p12, 8q24, 11q13, 12p13, 17q12, and 20q13 amplifications in breast cancers. BMC Cancer 6:245PubMedCrossRefGoogle Scholar
  29. 29.
    Chin SF, Wang Y, Thorne NP, Teschendorff AE, Pinder SE, Vias M et al (2007) Using array-comparative genomic hybridization to define molecular portraits of primary breast cancers. Oncogene 26:1959–1970PubMedCrossRefGoogle Scholar
  30. 30.
    Yu Y, Xu F, Peng H, Fang X, Zhao S, Li Y et al (1999) NOEY2 (ARHI), an imprinted putative tumor suppressor gene in ovarian and breast carcinomas. Proc Natl Acad Sci U S A 96:214–219PubMedCrossRefGoogle Scholar
  31. 31.
    Widschwendter M, Siegmund KD, Muller HM, Fiegl H, Marth C, Muller-Holzner E et al (2004) Association of breast cancer DNA methylation profiles with hormone receptor status and response to tamoxifen. Cancer Res 64:3807–3813PubMedCrossRefGoogle Scholar
  32. 32.
    Wang W, Huper G, Guo Y, Murphy SK, Olson JA Jr, Marks JR (2005) Analysis of methylation-sensitive transcriptome identifies GADD45a as a frequently methylated gene in breast cancer. Oncogene 24:2705–2714PubMedCrossRefGoogle Scholar
  33. 33.
    Pils D, Horak P, Gleiss A, Sax C, Fabjani G, Moebus VJ et al (2005) Five genes from chromosomal band 8p22 are significantly down-regulated in ovarian carcinoma: N33 and EFA6R have a potential impact on overall survival. Cancer 104:2417–2429PubMedCrossRefGoogle Scholar
  34. 34.
    Heintel D, Kienle D, Shehata M, Krober A, Kroemer E, Schwarzinger I et al (2005) High expression of lipoprotein lipase in poor risk B-cell chronic lymphocytic leukemia. Leukemia 19:1216–1223PubMedCrossRefGoogle Scholar
  35. 35.
    Buffart TE, Coffa J, Hermsen MA, Carvalho B, van dS Jr, Ylstra B et al (2005) DNA copy number changes at 8q11–24 in metastasized colorectal cancer. Cell Oncol 27:57–65PubMedGoogle Scholar
  36. 36.
    Narayan G, Bourdon V, Chaganti S, rias-Pulido H, Nandula SV, Rao PH et al (2007) Gene dosage alterations revealed by cDNA microarray analysis in cervical cancer: identification of candidate amplified and overexpressed genes. Genes Chromosomes Cancer 46:373–384PubMedCrossRefGoogle Scholar
  37. 37.
    Turbin DA, Cheang MC, Bajdik CD, Gelmon KA, Yorida E, De LA et al (2006) MDM2 protein expression is a negative prognostic marker in breast carcinoma. Mod Pathol 19:69–74PubMedCrossRefGoogle Scholar
  38. 38.
    Milde-Langosch K (2005) The Fos family of transcription factors and their role in tumourigenesis. Eur J Cancer 41:2449–2461PubMedCrossRefGoogle Scholar
  39. 39.
    Kustikova O, Kramerov D, Grigorian M, Berezin V, Bock E, Lukanidin E et al (1998) Fra-1 induces morphological transformation and increases in vitro invasiveness and motility of epithelioid adenocarcinoma cells. Mol Cell Biol 18:7095–7105PubMedGoogle Scholar
  40. 40.
    Caldeira JR, Prando EC, Quevedo FC, Neto FA, Rainho CA, Rogatto SR (2006) CDH1 promoter hypermethylation and E-cadherin protein expression in infiltrating breast cancer. BMC Cancer 6:48PubMedCrossRefGoogle Scholar
  41. 41.
    Seki T, Akita M, Kamimura Y, Muramatsu S, Araki H, Sugino A (2006) GINS is a DNA polymerase epsilon accessory factor during chromosomal DNA replication in budding yeast. J Biol Chem 281:21422–21432PubMedCrossRefGoogle Scholar
  42. 42.
    Ginestier C, Cervera N, Finetti P, Esteyries S, Esterni B, Adelaide J et al (2006) Prognosis and gene expression profiling of 20q13-amplified breast cancers. Clin Cancer Res 12:4533–4544PubMedCrossRefGoogle Scholar
  43. 43.
    Landen CN Jr, Lin YG, Immaneni A, Deavers MT, Merritt WM, Spannuth WA et al (2007) Overexpression of the centrosomal protein Aurora-A kinase is associated with poor prognosis in epithelial ovarian cancer patients. Clin Cancer Res 13:4098–4104PubMedCrossRefGoogle Scholar
  44. 44.
    Royce ME, Xia W, Sahin AA, Katayama H, Johnston DA, Hortobagyi G et al (2004) STK15/Aurora-A expression in primary breast tumors is correlated with nuclear grade but not with prognosis. Cancer 100:12–19PubMedCrossRefGoogle Scholar
  45. 45.
    Thomassen M, Tan Q, Eiriksdottir F, Bak M, Cold S, Kruse TA (2007) Comparison of gene sets for expression profiling: prediction of metastasis from low-malignant breast cancer. Clin Cancer Res 13:5355–5360PubMedCrossRefGoogle Scholar
  46. 46.
    Kauraniemi P, Kuukasjarvi T, Sauter G, Kallioniemi A (2003) Amplification of a 280-kilobase core region at the ERBB2 locus leads to activation of two hypothetical proteins in breast cancer. Am J Pathol 163:1979–1984PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Department of Biochemistry, Pharmacology, and GeneticsOdense University Hospital and Human Microarray Centre (HUMAC), University of Southern DenmarkOdenseDenmark
  2. 2.Institute of Public HealthUniversity of Southern DenmarkOdenseDenmark

Personalised recommendations