Breast Cancer Research and Treatment

, Volume 113, Issue 1, pp 75–82

Cyclin D1 expression is associated with poor prognostic features in estrogen receptor positive breast cancer

  • Kirsimari Aaltonen
  • Rose-Marie Amini
  • Göran Landberg
  • Hannaleena Eerola
  • Kristiina Aittomäki
  • Päivi Heikkilä
  • Heli Nevanlinna
  • Carl Blomqvist
Preclinical Study

Abstract

Cyclins D1 and E play an important role in breast carcinogenesis. High cyclin E expression is common in hormone receptor negative and high grade aggressive breast cancer, whereas cyclin D1 in hormone receptor positive and low grade breast cancer. Experimental data has suggested that cyclin D1 and E mediate cell proliferation by different mechanisms in estrogen receptor (ER) positive and negative breast cancer. To test this hypotheses in large breast cancer material and to clarify the histopathological correlations of cyclin E and D1, especially the association with proliferation, we analyzed cyclin E and D1 immunohistochemical expression on breast tumour microarrays consisting of 1348 invasive breast cancers. High cyclin D1 expression was associated with high grade (P < 0.0005), high cyclin A (P < 0.0005) and Ki67 (P < 0.0005) expression among ER positive but with low grade (P = 0.05) and low Ki67 (P = 0.01) expression among ER negative breast cancers. Cyclin E and D1 expression correlated positively in ER positive (P < 0.0005) but had a negative correlation in ER negative tumours (P = 0.004). Cyclin E associated with high grade among all tumours (P < 0.0005). In conclusion, the findings of this study show that cyclin D1 has separate roles, and proliferation is driven by different mechanisms in ER positive and negative breast cancers.

Keywords

Cyclin D1 Cyclin E Breast cancer Estrogen receptor Proliferation 

References

  1. 1.
    Ekholm SV, Reed SI (2000) Regulation of G(1) cyclin-dependent kinases in the mammalian cell cycle. Curr Opin Cell Biol 12:676–684PubMedCrossRefGoogle Scholar
  2. 2.
    Gillett C, Fantl V, Smith R et al (1994) Amplification and overexpression of cyclin D1 in breast cancer detected by immunohistochemical staining. Cancer Res 54:1812–1817PubMedGoogle Scholar
  3. 3.
    Michalides R, Hageman P, van Tinteren H et al (1996) A clinicopathological study on overexpression of cyclin D1 and of p53 in a series of 248 patients with operable breast cancer. Br J Cancer 73:728–734PubMedGoogle Scholar
  4. 4.
    van Diest PJ, Michalides RJ, Jannink L et al (1997) Cyclin D1 expression in invasive breast cancer: correlations and prognostic value. Am J Pathol 150:705–711PubMedGoogle Scholar
  5. 5.
    Umekita Y, Ohi Y, Sagara Y, Yoshida H (2002) Overexpression of cyclinD1 predicts for poor prognosis in estrogen receptor-negative breast cancer patients. Int J Cancer 98:415–418PubMedCrossRefGoogle Scholar
  6. 6.
    Hwang TS, Han HS, Hong YC et al (2003) Prognostic value of combined analysis of cyclin D1 and estrogen receptor status in breast cancer patients. Pathol Int 53:74–80PubMedCrossRefGoogle Scholar
  7. 7.
    Han S, Park K, Bae BN et al (2003) Cyclin D1 expression and patient outcome after tamoxifen therapy in estrogen receptor positive metastatic breast cancer. Oncol Rep 10:141–144PubMedGoogle Scholar
  8. 8.
    Elsheikh S, Green AR, Aleskandarany MA et al (2007) CCND1 amplification and cyclin D1 expression in breast cancer and their relation with proteomic subgroups and patient outcome. Breast Cancer Res TreatGoogle Scholar
  9. 9.
    Doisneau-Sixou SF, Sergio CM, Carroll JS et al (2003) Estrogen and antiestrogen regulation of cell cycle progression in breast cancer cells. Endocr Relat Cancer 10:179–186PubMedCrossRefGoogle Scholar
  10. 10.
    Gillett C, Smith P, Gregory W et al (1996) Cyclin D1 and prognosis in human breast cancer. Int J Cancer 69:92–99PubMedCrossRefGoogle Scholar
  11. 11.
    Reis-Filho JS, Savage K, Lambros MB et al (2006) Cyclin D1 protein overexpression and CCND1 amplification in breast carcinomas: an immunohistochemical and chromogenic in situ hybridisation analysis. Mod Pathol 19:999–1009PubMedCrossRefGoogle Scholar
  12. 12.
    Stendahl M, Kronblad A, Ryden L et al (2004) Cyclin D1 overexpression is a negative predictive factor for tamoxifen response in postmenopausal breast cancer patients. Br J Cancer 90:1942–1948PubMedCrossRefGoogle Scholar
  13. 13.
    Ahnstrom M, Nordenskjold B, Rutqvist LE et al (2005) Role of cyclin D1 in ErbB2-positive breast cancer and tamoxifen resistance. Breast Cancer Res Treat 91:145–151PubMedCrossRefGoogle Scholar
  14. 14.
    Jirstrom K, Stendahl M, Ryden L et al (2005) Adverse effect of adjuvant tamoxifen in premenopausal breast cancer with cyclin D1 gene amplification. Cancer Res 65:8009–8016PubMedGoogle Scholar
  15. 15.
    Neuman E, Ladha MH, Lin N et al (1997) Cyclin D1 stimulation of estrogen receptor transcriptional activity independent of cdk4. Mol Cell Biol 17:5338–5347PubMedGoogle Scholar
  16. 16.
    Keyomarsi K, Conte D Jr, Toyofuku W et al (1995) Deregulation of cyclin E in breast cancer. Oncogene 11:941–950PubMedGoogle Scholar
  17. 17.
    Nielsen NH, Arnerlov C, Emdin SO et al (1996) Cyclin E overexpression, a negative prognostic factor in breast cancer with strong correlation to oestrogen receptor status. Br J Cancer 74:874–880PubMedGoogle Scholar
  18. 18.
    Spruck CH, Won KA, Reed SI (1999) Deregulated cyclin E induces chromosome instability. Nature 401:297–300PubMedCrossRefGoogle Scholar
  19. 19.
    Keyomarsi K, Tucker SL, Buchholz TA et al (2002) Cyclin E and survival in patients with breast cancer. N Engl J Med 347:1566–1575PubMedCrossRefGoogle Scholar
  20. 20.
    Han S, Park K, Bae BN et al (2003) Prognostic implication of cyclin E expression and its relationship with cyclin D1 and p27Kip1 expression on tissue microarrays of node negative breast cancer. J Surg Oncol 83:241–247PubMedCrossRefGoogle Scholar
  21. 21.
    Rudolph P, Kuhling H, Alm P et al (2003) Differential prognostic impact of the cyclins E and B in premenopausal and postmenopausal women with lymph node-negative breast cancer. Int J Cancer 105:674–680PubMedCrossRefGoogle Scholar
  22. 22.
    Kuhling H, Alm P, Olsson H et al (2003) Expression of cyclins E, A, and B, and prognosis in lymph node-negative breast cancer. J Pathol 199:424–431PubMedCrossRefGoogle Scholar
  23. 23.
    Lindahl T, Landberg G, Ahlgren J et al (2004) Overexpression of cyclin E protein is associated with specific mutation types in the p53 gene and poor survival in human breast cancer. Carcinogenesis 25:375–380PubMedCrossRefGoogle Scholar
  24. 24.
    Chappuis PO, Donato E, Goffin JR et al (2005) Cyclin E expression in breast cancer: predicting germline BRCA1 mutations, prognosis and response to treatment. Ann Oncol 16:735–742PubMedCrossRefGoogle Scholar
  25. 25.
    Spruck C, Sun D, Fiegl H et al (2006) Detection of low molecular weight derivatives of cyclin E1 is a function of cyclin E1 protein levels in breast cancer. Cancer Res 66:7355–7360PubMedCrossRefGoogle Scholar
  26. 26.
    Sieuwerts AM, Look MP, Meijer-van Gelder ME et al (2006) Which cyclin E prevails as prognostic marker for breast cancer? Results from a retrospective study involving 635 lymph node-negative breast cancer patients. Clin Cancer Res 12:3319–3328PubMedCrossRefGoogle Scholar
  27. 27.
    Span PN, Tjan-Heijnen VC, Manders P et al (2003) Cyclin-E is a strong predictor of endocrine therapy failure in human breast cancer. Oncogene 22:4898–4904PubMedCrossRefGoogle Scholar
  28. 28.
    Akli S, Zheng PJ, Multani AS et al (2004) Tumor-specific low molecular weight forms of cyclin E induce genomic instability and resistance to p21, p27, and antiestrogens in breast cancer. Cancer Res 64:3198–3208PubMedCrossRefGoogle Scholar
  29. 29.
    Desmedt C, Ouriaghli FE, Durbecq V et al (2006) Impact of cyclins E, neutrophil elastase and proteinase 3 expression levels on clinical outcome in primary breast cancer patients. Int J Cancer 119:2539–2545PubMedCrossRefGoogle Scholar
  30. 30.
    Porter PL, Barlow WE, Yeh IT et al (2006) p27(Kip1) and cyclin E expression and breast cancer survival after treatment with adjuvant chemotherapy. J Natl Cancer Inst 98:1723–1731PubMedCrossRefGoogle Scholar
  31. 31.
    Loden M, Stighall M, Nielsen NH et al (2002) The cyclin D1 high and cyclin E high subgroups of breast cancer: Separate pathways in tumorogenesis based on pattern of genetic aberrations and inactivation of the pRb node. Oncogene 21:4680–4690PubMedCrossRefGoogle Scholar
  32. 32.
    Syrjakoski K, Vahteristo P, Eerola H et al (2000) Population-based study of BRCA1 and BRCA2 mutations in 1035 unselected finnish breast cancer patients. J Natl Cancer Inst 92:1529–1531PubMedCrossRefGoogle Scholar
  33. 33.
    Kilpivaara O, Bartkova J, Eerola H et al (2005) Correlation of CHEK2 protein expression and c.1100delC mutation status with tumor characteristics among unselected breast cancer patients. Int J Cancer 113:575–580PubMedCrossRefGoogle Scholar
  34. 34.
    Eerola H, Blomqvist C, Pukkala E et al (2000) Familial breast cancer in southern finland: how prevalent are breast cancer families and can we trust the family history reported by patients? Eur J Cancer 36:1143–1148PubMedCrossRefGoogle Scholar
  35. 35.
    Eerola H, Heikkila P, Tamminen A et al (2005) Histopathological features of breast tumours in BRCA1, BRCA2 and mutation-negative breast cancer families. Breast Cancer Res 7:R93–R100PubMedCrossRefGoogle Scholar
  36. 36.
    Tanner M, Gancberg D, Di Leo A et al (2000) Chromogenic in situ hybridization: a practical alternative for fluorescence in situ hybridization to detect HER-2/neu oncogene amplification in archival breast cancer samples. Am J Pathol 157:1467–1472PubMedGoogle Scholar
  37. 37.
    Lassus H, Leminen A, Vayrynen A et al (2004) ERBB2 amplification is superior to protein expression status in predicting patient outcome in serous ovarian carcinoma. Gynecol Oncol 92:31–39PubMedCrossRefGoogle Scholar
  38. 38.
    Tommiska J, Eerola H, Heinonen M et al (2005) Breast cancer patients with p53 Pro72 homozygous genotype have a poorer survival. Clin Cancer Res 11:5098–5103PubMedCrossRefGoogle Scholar
  39. 39.
    Aaltonen K, Ahlin C, Amini RM et al (2006) Reliability of cyclin A assessment on tissue microarrays in breast cancer compared to conventional histological slides. Br J Cancer 94:1697–1702PubMedGoogle Scholar
  40. 40.
    Ahlin C, Aaltonen K, Amini RM et al (2007) Ki-67 and cyclin A as prognostic factors in early breast cancer. What are the optimal cut-off values? Histopathology 51:491–498PubMedCrossRefGoogle Scholar
  41. 41.
    Lamb J, Ladha MH, McMahon C et al (2000) Regulation of the functional interaction between cyclin D1 and the estrogen receptor. Mol Cell Biol 20:8667–8675PubMedCrossRefGoogle Scholar
  42. 42.
    Grillo M, Bott MJ, Khandke N et al (2006) Validation of cyclin D1/CDK4 as an anticancer drug target in MCF-7 breast cancer cells: effect of regulated overexpression of cyclin D1 and siRNA-mediated inhibition of endogenous cyclin D1 and CDK4 expression. Breast Cancer Res Treat 95:185–194PubMedCrossRefGoogle Scholar
  43. 43.
    Berglund P, Stighall M, Jirstrom K et al (2007) Cyclin E confers a prognostic value in premenopausal breast cancer patients with tumours exhibiting an infiltrative growth pattern. J Clin PatholGoogle Scholar
  44. 44.
    Berglund P, Stighall M, Jirstrom K et al (2005) Cyclin E overexpression obstructs infiltrative behavior in breast cancer: a novel role reflected in the growth pattern of medullary breast cancers. Cancer Res 65:9727–9734PubMedCrossRefGoogle Scholar
  45. 45.
    Potemski P, Kusinska R, Watala C et al (2006) Cyclin E expression in breast cancer correlates with negative steroid receptor status, HER2 expression, tumor grade and proliferation. J Exp Clin Cancer Res 25:59–64PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Kirsimari Aaltonen
    • 1
    • 2
  • Rose-Marie Amini
    • 3
  • Göran Landberg
    • 4
  • Hannaleena Eerola
    • 1
    • 2
  • Kristiina Aittomäki
    • 5
  • Päivi Heikkilä
    • 6
  • Heli Nevanlinna
    • 2
  • Carl Blomqvist
    • 1
    • 7
  1. 1.Department of OncologyHelsinki University Central HospitalHelsinkiFinland
  2. 2.Department of Obstetrics and GynaecologyHelsinki University Central HospitalHelsinkiFinland
  3. 3.Department of Genetics and PathologyUppsala University HospitalUppsalaSweden
  4. 4.Division of Pathology, Institution of Laboratory MedicineMalmö University HospitalMalmoSweden
  5. 5.Department of Clinical GeneticsHelsinki University Central HospitalHelsinkiFinland
  6. 6.Department of PathologyHelsinki University Central HospitalHelsinkiFinland
  7. 7.Department of Oncology, Radiology and Clinical ImmunologyUppsala University HospitalUppsalaSweden

Personalised recommendations