Breast Cancer Research and Treatment

, Volume 113, Issue 1, pp 43–58 | Cite as

Evidence for a role of the Simian Virus 40 in human breast carcinomas

  • M. Hachana
  • M. TrimecheEmail author
  • S. Ziadi
  • K. Amara
  • S. Korbi
Preclinical Study


Aims of the study The aim of this study was to investigate whether the Simian Virus 40 (SV40) is implicated in human breast carcinomas (BC). Experimental design SV40 presence was investigated by PCR assays targeting the Tag, the regulatory, and the VP1 regions in 109 invasive breast ductal carcinomas from Tunisian women. We also examined the relationship between the presence of SV40 and promoter methylation status of 15 tumor-related genes. Immunohistochemistry was used to investigate the expression of Tag, estrogen and progesterone receptors, HER2, and P53. Results SV40 DNA sequences were detected in 22% of tumors and in only 1.8% of the matched non-tumoral tissues. Using immunohistochemistry, SV40 was detected in the tumor cells. Hypermethylation frequencies were 78% for RASSF1A, 66% for SHP1, 61% for HIN1 and BRCA1, 47% for P16 and ER, 42% for CDH1 and APC, 40% for BLU, 35% for DAPK, 34% for RARβ2, 27% for GSTP1, 17% for TIMP3, 14% for CCND2, and 8% for hMLH1. Interestingly, the frequencies of RASSF1A, SHP1, BRCA1, and TIMP3 methylation, and the mean of the methylation index (MI) were significantly higher in SV40-positive than in SV40-negative cases (P-values ranging from 0.043 to 0.003). Moreover, SV40 presence correlates with P53 protein accumulation (32.7% vs. 13.3%; P = 0.015) and HER2 low expression (3.7% vs. 28%; P = 0.008). We also found SV40 more frequently in patients over 50 years than in younger patients (34.8% vs. 12.3%; P = 0.006). Conclusions This study is the first to demonstrate the presence of SV40 in human BC and provides data supporting a role for this virus in the pathogenesis of these tumors.


BRCA1 HER2 Human breast carcinomas Methylation P53 Simian Virus 40 TIMP3 Tumor suppressor genes Tunisia 



This work was supported by the « Ministère de l’Enseignement Supérieur, de la Recherche Scientifique et Technologie » and the « Ministère de la Santé Publique » of Tunisia. The authors thank Dr Regis A. Vilchez from the Baylor College of Medicine, Houston, TX, USA for his kind gift of the plasmids containing SV40 genomes and Professor P. Wikström from the Department of Medical Bioscience, Umea, Sweden for his kind gift paraffin-embedded tissue of a transgenic adenocarcinoma of the mouse prostate (TRAMP) positive for SV40 Tag expression. We also thank Intissar Toumi, Samir Jaafar, Chedia Haj Salah, and Houda Sghaer for their expert technical assistance.


  1. 1.
    Parkin DM, Ferlay J, Hamdi-Cherif M et al (2003) Cancer in Africa: epidemiology and prevention. IARC Press, LyonGoogle Scholar
  2. 2.
    Yost K, Perkins C, Cohen R et al (2001) Socioeconomic status and breast cancer incidence in California for different race/ethnic groups. Cancer Causes Control 12:703–711PubMedCrossRefGoogle Scholar
  3. 3.
    Ries LAG, Eisner MP, Kosary CL et al (2002) SEER cancer statistics review, 1973–1999. National Cancer Institute, Bethesda, MDGoogle Scholar
  4. 4.
    Hankinson SE, Colditz GA, Willett WC et al (2004) Towards an integrated model for breast cancer etiology: the lifelong interplay of genes, lifestyle, and hormones. Breast Cancer Res 6:213–218PubMedCrossRefGoogle Scholar
  5. 5.
    King MC, Marks JH, Mandell JB (2003) Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 302:643–646PubMedCrossRefGoogle Scholar
  6. 6.
    Medina D (1976) Preneoplastic lesions in murine mammary cancer. Cancer Res 36:2589–2595PubMedGoogle Scholar
  7. 7.
    Dickson C (1990) Role of the int-genes in murine mammary tumor development and implications for human breast cancer. Int J Cancer 5:51–54CrossRefGoogle Scholar
  8. 8.
    Holland JF, Pogo GT (1999) Possible etiology of human breast cancer. Biomed Pharmacother 53:334PubMedCrossRefGoogle Scholar
  9. 9.
    Bonnet M, Guinebretiere JM, Kremmer E et al (1999) Detection of Epstein-Barr virus in invasive breast cancers. J Natl Cancer Inst 91:1376–1381PubMedCrossRefGoogle Scholar
  10. 10.
    Topp WC, Rifkin DB, Sleigh MJ (1981) SV40 mutations with an altered small-t protein are tumorigenic in newborn hamsters. Virology 11:341–350CrossRefGoogle Scholar
  11. 11.
    Bergsagel DJ, Finegold MJ, Butel JS et al (1992) DNA sequences similar to those of simian virus SV40 in ependymomas and choroid plexus tumors of childhood. N Engl J Med 326:988–993PubMedCrossRefGoogle Scholar
  12. 12.
    Carbone M, Pass HI, Rizzo P et al (1994) Simian virus 40-like DNA sequences in human pleural mesothelioma. Oncogene 9:1781–1790PubMedGoogle Scholar
  13. 13.
    Yamamoto H, Nakayama T, Murakami H et al (2000) High incidence of SV40-like sequences detection in tumour and peripheral blood cells of Japanese osteosarcoma patients. Br J Cancer 82:1677–1681PubMedCrossRefGoogle Scholar
  14. 14.
    Vilchez RA, Madden CR, Kozinetz CA et al (2002) Simian virus 40 and non-Hodgkin lymphoma. Lancet 359:817–823PubMedCrossRefGoogle Scholar
  15. 15.
    Amara K, Trimeche T, Ziadi S et al (2007) Presence of simian virus 40 DNA sequences in diffuse large B-cell lymphomas in Tunisia correlates with aberrant promoter hypermethylation of multiple tumor suppressor genes. Int J Cancer 121:2693–2702PubMedCrossRefGoogle Scholar
  16. 16.
    Wong NA, Rae F, Herriot MM et al (2003) SV40 Tag DNA sequences, present in small proportion of human hepatocellular carcinomas, are associated with reduction survival. J Clin Pathol 56:904–909PubMedCrossRefGoogle Scholar
  17. 17.
    Pacini F, Vivaldi A, Santoro M et al (1998) Simian virus 40-like DNA sequences in human papillary thyroid carcinomas. Oncogene 15:665–669CrossRefGoogle Scholar
  18. 18.
    Mietz JA, Unger T, Huibregtse JM et al (1992) The transcriptional transactivation function of wild-type p53 is inhibited by SV40 large T-antigen and by HPV-16 E6 oncoprotein. EMBO J 11:5013–5020PubMedGoogle Scholar
  19. 19.
    Dyson N, Howley PM, Münger K et al (1989) The human papilloma virus-16 E7 oncoprotein is able to bind to retinoblastoma gene product. Science 342:934–937CrossRefGoogle Scholar
  20. 20.
    Green JE, Shibata MA, Yoshidome K et al (2000) The C3(1)/SV40 T antigen transgenic mouse model of mammary cancer: ductal epithelial cell targeting with multistage progression to carcinoma. Oncogene 19:1020–1027PubMedCrossRefGoogle Scholar
  21. 21.
    Elenbaas B, Spirio L, Koerner F et al (2001) Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev 15:50–65PubMedCrossRefGoogle Scholar
  22. 22.
    Esteller M (2002a) CpG island hypermethylation and tumors suppressor genes: a booming present, a brighter future. Oncogene 21:4527–4540CrossRefGoogle Scholar
  23. 23.
    Wong N, Li L, Tsang K et al (2002) Frequent loss of chromosome 3p and hypermethylation of RASSF1A in cholangiocarcinoma. J Hepatol 37:633–639PubMedCrossRefGoogle Scholar
  24. 24.
    Shivapurkar N, Takahashi T, Reddy J et al (2004) Presence of simian virus 40 DNA sequences in human lymphoid and hematopoietic malignancies and their relationship to aberrant promoter methylation of multiple genes. Cancer Res 64:3757–3760PubMedCrossRefGoogle Scholar
  25. 25.
    Toyooka S, Pass HI, Shivapurkar N et al (2001) Aberrant methylation and simian virus 40 tag sequences in malignant mesothelioma. Cancer Res 61:5727–5730PubMedGoogle Scholar
  26. 26.
    Suzuki M, Toyooka S, Shivapurkar N et al (2005) Aberrant methylation profile of human malignant mesotheliomas and its relationship to SV40 infection. Oncogene 24:1302–1308PubMedCrossRefGoogle Scholar
  27. 27.
    Herman JG, Merlo A, Mao L et al (1995) Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res 55:4525–4530PubMedGoogle Scholar
  28. 28.
    Evron E, Umbricht CB, Korz D et al (2001) Loss of cyclin D2 expression in the majority of breast cancers is associated with promoter hypermethylation. Cancer Res 61:2782–2787PubMedGoogle Scholar
  29. 29.
    Burbee DG, Forgacs E, Zochbauer-Muller S et al (2001) Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst (Bethesda) 93:691–699CrossRefGoogle Scholar
  30. 30.
    Graff JR, Herman JG, Lapidus RG et al (1995) E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res 55:5195–5199PubMedGoogle Scholar
  31. 31.
    Esteller M, Sparks A, Toyota M et al (2000) Analysis of adenomatous polyposis coli promoter hypermethylation in human cancer. Cancer Res 60:4366–4371PubMedGoogle Scholar
  32. 32.
    Xu XL, Yu J, Zhang HY et al (2004) Methylation profile of the promoter CpG islands of 31 genes that may contribute to colorectal carcinogenesis. World J Gastroenterol 10:3441–3454PubMedGoogle Scholar
  33. 33.
    Esteller M, Silva JM, Dominguez G et al (2000b) Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst (Bethesda) 92:564–569CrossRefGoogle Scholar
  34. 34.
    Cairns P, Esteller M, Herman JG et al (2001) Molecular detection of prostate cancer in urine by GSTP1 hypermethylation. Clin Cancer Res 7:2727–2730PubMedGoogle Scholar
  35. 35.
    Toyooka S, Toyooka KO, Miyajima K et al (2003) Epigenetic downregulation of death-associated protein kinase in lung cancers. Clin Cancer Res 9:3034–3041PubMedGoogle Scholar
  36. 36.
    Oka T, Ouchida M, Koyama M et al (2002) Gene silencing of the tyrosine phosphatase SHP1 gene by aberrant methylation in leukemias/lymphomas. Cancer Res 62:6390–6394PubMedGoogle Scholar
  37. 37.
    Krop IE, Sgroi D, Porter DA et al (2001) HIN-1, a putative cytokine highly expressed in normal but not cancerous mammary epithelial cells. Proc Natl Acad Sci USA 98:9796–9801PubMedCrossRefGoogle Scholar
  38. 38.
    Agathanggelou A, Dalloll A, Zochbauer-Muller S et al (2003) Epigenetic inactivation of the candidate 3p21.3 suppressor gene BLU in human cancers. Oncogene 22:1580–1588PubMedCrossRefGoogle Scholar
  39. 39.
    Ottaviano YL, Issa JP, Parl FF et al (1994) Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells. Cancer Res 54:2552–2555PubMedGoogle Scholar
  40. 40.
    Widschwendter M, Berger J, Hermann M et al (2000) Methylation and silencing of the retinoic acid receptor-beta2 gene in breast cancer. J Natl Cancer Inst (Bethesda) 92:826–832CrossRefGoogle Scholar
  41. 41.
    Elston CW, Ellis IO, Goulging H, Pindre SE (1998) Role of pathology in the prognosis and management of breast cancer. In: Elston CW, Ellis IO (eds) Systemic pathology, 3rd edn, vol 13. The Breast, Churchill Livingstone, pp 385–433Google Scholar
  42. 42.
    Sobin LH, Wittekind Ch (eds) (1997) International Union Against Cancer, ‘TNM classification of malignant tumours’, 5th edn. Wiley-Liss, New York, pp 23–130Google Scholar
  43. 43.
    Bauer HM, Ting Y, Greer CE et al (1991) Genital human papillomavirus infection in female university students as determined by PCR based method. JAMA 265:472–477PubMedCrossRefGoogle Scholar
  44. 44.
    Saiki RK, Bugawan TL, Horn GT et al (1986) Analysis of enzymatically amplified beta-globin and HLA-DQ alpha DNA with allele-specific oligonucleotide probes. Nature 324:163–166PubMedCrossRefGoogle Scholar
  45. 45.
    Nakatsuka S, Liu A, Dong Z et al (2003) Simian virus 40 sequences in malignant lymphomas in Japan. Cancer Res 63:7606–7608PubMedGoogle Scholar
  46. 46.
    Lednicky JA, Stewart AR, Jenkins JJ et al (1997) SV40 DNA in human osteosarcomas shows sequence variation among T-antigen genes. Int J Cancer 72:791–800PubMedCrossRefGoogle Scholar
  47. 47.
    Reuther FJ, Löhler J, Herms J et al (2001) Low incidence of SV40-like sequences in ependymal tumours. J Pathol 195:580–585PubMedCrossRefGoogle Scholar
  48. 48.
    Carbone M, Rizzo P, Pass HI (2005) Simian virus 40, poliovaccines and human tumors: a review of recent developments. Oncogene 15:1877–1888CrossRefGoogle Scholar
  49. 49.
    Singal R, Ferdinand L, Reis IM et al (2004) Methylation of multiple genes in prostate cancer and the relationship with clinicopathological features of disease. Oncol Rep 12:631–637PubMedGoogle Scholar
  50. 50.
    Remmele W, Stegner HE (1987) Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue. Pathologe 8:138–140PubMedGoogle Scholar
  51. 51.
    Jacobs TW, Gown AM, Yaziji H, Barnes MJ et al (1999) Specificity of HercepTest in determining HER-2/neu status of breast cancers using the United States food and drug administration approved scoring system. J Clin Oncol 17:1983–1987PubMedGoogle Scholar
  52. 52.
    Sui LF, Williamson J, Lowenthal RM et al (2005) Absence of simian virus 40 (SV40) DNA in lymphoma samples from Tasmania, Australia. Pathology 37:157–159PubMedCrossRefGoogle Scholar
  53. 53.
    Ferlay J, Bray F, Pisani P, Parkin MD (2004) GLOBOCAN 2002 cancer incidence, mortality and prevalence worldwide IARC cancer base no. 5, version 2.0. IARC Press, LyonGoogle Scholar
  54. 54.
    Barbanti-Brodano G, Martini F, De Mattei M et al (1998) BK and JC human polyomaviruses and simian virus 40: natural history of infection in humans, experimental oncogenicity and association with human tumors. Adv Virus Res 50:69–99PubMedCrossRefGoogle Scholar
  55. 55.
    Butel JS, Lednicky JA (1999) Cell and molecular biology of simian virus 40: implications for human infections and disease. J Natl Cancer Inst 91:119–134PubMedCrossRefGoogle Scholar
  56. 56.
    Jasani B, Cristaudo A, Emri SA et al (2001) Association of SV40 with human tumors. Semin Cancer Biol 11:49–61PubMedCrossRefGoogle Scholar
  57. 57.
    Ray FA, Peabody DS, Cooper JL et al (1990) SV40 T antigen alone drives karyotype instability that precedes neoplastic transformation of human diploid fibroblasts. J Cell Biochem 42:13–31PubMedCrossRefGoogle Scholar
  58. 58.
    Fanning E, Knippers R (1992) Structure and function of simian virus 40 large tumor antigen. Annu Rev Biochem 61:55–85PubMedCrossRefGoogle Scholar
  59. 59.
    Ludlow JW (1993) Interactions between SV 40 large-tumor antigen and the growth suppressor proteins pRB and p53. FASEB J 7:866–871PubMedGoogle Scholar
  60. 60.
    Carbone M, Rizzo P, Grimley PM et al (1997) Simian virus-40 large-T antigen binds p53 in human mesotheliomas. Nat Med 3:908–912PubMedCrossRefGoogle Scholar
  61. 61.
    Zhen HN, Zhang X, Bu HY et al (1999) Expression of the simian virus 40 large tumor antigen and formation of Tag-p53 and Tag-pRb complexes in human brain tumors. Cancer 86:2124–2132PubMedCrossRefGoogle Scholar
  62. 62.
    Amara K, Trimeche T, Ziadi S et al (2007) Presence of simian virus 40 in diffuse large B-cell lymphomas in Tunisia correlates with germinal center B-cell immunophenotype, t(14;18) translocation, and P53 accumulation. Mod Path. Advance online publication 28 December 2007; doi: 10.1038/modpathol.3800993
  63. 63.
    Slamon DJ, Godolphin W, Jones LA et al (2004) Studies of the HER-2/neu proto-oncogene in human breast and ovarien cancer. Science 244:707–712CrossRefGoogle Scholar
  64. 64.
    Yu D, Hung MC (2000) Overexpression of ErbB2 in cancer and ErbB2-targeting strategies. Oncogene 19:6115–6121PubMedCrossRefGoogle Scholar
  65. 65.
    Chuang TC, Yu YH, Lin YS et al (2002) The N-terminal domain of SV40 large T antigen represses the HER2/neu-mediated transformation and metastatic potential in breast cancer. FEBS Lett 511:46–50PubMedCrossRefGoogle Scholar
  66. 66.
    Esteller M, Fraga MF, Paz MF et al (2002b) Cancer epigenetics and methylation. Science 297:1808–1808CrossRefGoogle Scholar
  67. 67.
    Gazdar AF, Butel JS, Carbone M (2002) SV40 and human tumours: myth, association or causality? Nat Rev Cancer 2:957–964PubMedCrossRefGoogle Scholar
  68. 68.
    Kroczynska B, Cutone R, Bocchetta M et al (2006) Crocidolite asbestos and SV40 are cocarcinogens in human mesothelial cells and in causing mesothelioma in hamsters. PNAS 103:14128–14133PubMedCrossRefGoogle Scholar
  69. 69.
    Robinson C, van Bruggen I, Segal A et al (2006) A novel SV40 Tag transgenic model of asbestos-induced mesothelioma: malignant transformation is dose dependant. Cancer Res 66:10786–10794PubMedCrossRefGoogle Scholar
  70. 70.
    Tavassoli FA, Davilee P (2003) Pathology and genetics of tumours of the breast and female genital organs. IARC Press, LyonGoogle Scholar
  71. 71.
    Martinelli M, Martini F, Rinaldi E et al (2002) Simian virus 40 sequences and expression of the viral large T antigen oncoprotein in human plepmorphic adenomas of parotid glands. Am J Pathol 161:1127–1133PubMedGoogle Scholar
  72. 72.
    Vivaldi A, Pacini F, Martini F et al (2003) Simian virus 40-like sequences from early and late regions in human thyroid tumors of different histotypes. J Clin Endocrinol Metab 88:892–896PubMedCrossRefGoogle Scholar
  73. 73.
    Deeb KK, Michalowska AM, Yoon CY et al (2007) Identification of an integrated SV40 T/t-antigen cancer signature in aggressive human breast, prostate, and lung cancinomas with poor prognosis. Cancer Res 67:8065–8080PubMedCrossRefGoogle Scholar
  74. 74.
    Cutrone R, Lednicky J, Dunn G et al (2005) Some oral poliovirus were contaminated with infectious SV40 after 1961. Cancer Res 65:10273–10279PubMedCrossRefGoogle Scholar
  75. 75.
    Butel JS, Lednicky JA (1999) Cell and molecular biology of simian virus 40: implications for human infections and disease. J Natl Cancer Inst 91:119–134PubMedCrossRefGoogle Scholar
  76. 76.
    Caron de Fromentel CC, Nardeux PC, Soussi T et al (1985) Epithelial HBL-100 cell line derived from milk of an apparently healthy woman harbours SV40 genetic information. Exp Cell Res 160:83–94PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • M. Hachana
    • 1
  • M. Trimeche
    • 1
    Email author
  • S. Ziadi
    • 1
  • K. Amara
    • 1
  • S. Korbi
    • 1
  1. 1.Department of PathologyFarhat Hached HospitalSousseTunisia

Personalised recommendations