A high-resolution integrated analysis of genetic and expression profiles of breast cancer cell lines

  • Alan Mackay
  • Narinder Tamber
  • Kerry Fenwick
  • Marjan Iravani
  • Anita Grigoriadis
  • Tim Dexter
  • Christopher J. Lord
  • Jorge S. Reis-Filho
  • Alan Ashworth
Preclinical Study


Tumour cell lines derived from breast cancer patients constitute one of the cornerstones of breast cancer research. To characterise breast cancer cell lines at the genetic level, we have developed a full tiling path bacterial artificial chromosome (BAC) array collection for comparative genomic hybridisation (aCGH). This aCGH BAC collection covers 98% of the entire human genome at a resolution of 40–60 kbp. We have used this platform alongside an in-house produced 17 K cDNA microarray set to characterise the genetic and transcriptomic profiles of 24 breast cancer cell lines, as well as cell types derived from non-diseased breast. We demonstrate that breast cancer cell lines have genomic and transcriptomic features that recapitulate those of primary breast cancers and can be reliably subclassified into basal-like and luminal subgroups. By overlaying aCGH and transcriptomic data, we have identified 753 genes whose expression correlate with copy number; this list comprised numerous oncogenes recurrently amplified and overexpressed in breast cancer (e.g., HER2, MYC, CCND1 and AURKA). Finally, we demonstrate that although breast cancer cell lines have genomic features usually found in grade III breast cancers (i.e., gains of 1q, 8q and 20q), basal-like and luminal cell lines are characterised by distinct genomic aberrations.


Breast cancer Cell lines aCGH 



We thank Breakthrough Breast Cancer and Cancer Research UK for their continued support of this work.

Supplementary material

10549_2008_296_MOESM1_ESM.pdf (7.7 mb)
(PDF 7740 kb)


  1. 1.
    Charafe-Jauffret E, Ginestier C, Monville F et al (2006) Gene expression profiling of breast cell lines identifies potential new basal markers. Oncogene 25:2273–2284. doi: 10.1038/sj.onc.1209254 CrossRefPubMedGoogle Scholar
  2. 2.
    Chin K, DeVries S, Fridlyand J et al (2006) Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10:529–541. doi: 10.1016/j.ccr.2006.10.009 CrossRefPubMedGoogle Scholar
  3. 3.
    Hu Z, Fan C, Oh DS et al (2006) The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7:96. doi: 10.1186/1471-2164-7-96 CrossRefPubMedGoogle Scholar
  4. 4.
    Neve RM, Chin K, Fridlyand J et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10:515–527. doi: 10.1016/j.ccr.2006.10.008 CrossRefPubMedGoogle Scholar
  5. 5.
    Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752. doi: 10.1038/35021093 CrossRefPubMedGoogle Scholar
  6. 6.
    Sorlie T, Tibshirani R, Parker J et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100:8418–8423. doi: 10.1073/pnas.0932692100 CrossRefPubMedGoogle Scholar
  7. 7.
    Brenton JD, Carey LA, Ahmed AA et al (2005) Molecular classification and molecular forecasting of breast cancer: ready for clinical application? J Clin Oncol 23:7350–7360. doi: 10.1200/JCO.2005.03.3845 CrossRefPubMedGoogle Scholar
  8. 8.
    Rakha EA, Reis-Filho JS, Ellis IO (2008) Basal-like breast cancer: a critical review. J Clin Oncol 26:2568–2581. doi: 10.1200/JCO.2007.13.1748 CrossRefPubMedGoogle Scholar
  9. 9.
    Lacroix M, Leclercq G (2004) Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res Treat 83:249–289. doi: 10.1023/ CrossRefPubMedGoogle Scholar
  10. 10.
    Stamps AC, Davies SC, Burman J et al (1994) Analysis of proviral integration in human mammary epithelial cell lines immortalized by retroviral infection with a temperature-sensitive SV40 T-antigen construct. Int J Cancer 57:865–874. doi: 10.1002/ijc.2910570616 CrossRefPubMedGoogle Scholar
  11. 11.
    Clarke C, Titley J, Davies S et al (1994) An immunomagnetic separation method using superparamagnetic (MACS) beads for large-scale purification of human mammary luminal and myoepithelial cells. Epithelial Cell Biol 3:38–46PubMedGoogle Scholar
  12. 12.
    O’Hare MJ, Bond J, Clarke C et al (2001) Conditional immortalization of freshly isolated human mammary fibroblasts and endothelial cells. Proc Natl Acad Sci USA 98:646–651. doi: 10.1073/pnas.98.2.646 CrossRefPubMedGoogle Scholar
  13. 13.
    Freshney RI (2005) Culture of animal cells: a manual of basic technique, 5th edn. Wiley-Liss, New YorkGoogle Scholar
  14. 14.
    Arriola E, Lambros MB, Jones C et al (2007) Evaluation of Phi29-based whole-genome amplification for microarray-based comparative genomic hybridisation. Lab Invest 87:75–83. doi: 10.1038/labinvest.3700495 CrossRefPubMedGoogle Scholar
  15. 15.
    Reis-Filho JS, Simpson PT, Jones C et al (2005) Pleomorphic lobular carcinoma of the breast: role of comprehensive molecular pathology in characterization of an entity. J Pathol 207:1–13. doi: 10.1002/path.1806 CrossRefPubMedGoogle Scholar
  16. 16.
    Arriola E, Marchio C, Tan DS et al (2008) Genomic analysis of the HER2/TOP2A amplicon in breast cancer and breast cancer cell lines. Lab Invest 88:491–503. doi: 10.1038/labinvest.2008.19 CrossRefPubMedGoogle Scholar
  17. 17.
    Marchio C, Iravani M, Natrajan R et al (2008) Genomic and immunophenotypical characterization of pure micropapillary carcinomas of the breast. J Pathol 215:398–410. doi: 10.1002/path.2368 CrossRefPubMedGoogle Scholar
  18. 18.
    Marchio C, Natrajan R, Shiu K et al (2008) The genomic profile of HER2-amplified breast cancers: the influence of ER status. J Pathol 216:399–407. doi: 10.1002/path.2423 CrossRefPubMedGoogle Scholar
  19. 19.
    Mackay A, Urruticoechea A, Dixon JM et al (2007) Molecular response to aromatase inhibitor treatment in primary breast cancer. Breast Cancer Res 9:R37. doi: 10.1186/bcr1732 CrossRefPubMedGoogle Scholar
  20. 20.
    Tibshirani R, Hastie T, Narasimhan B et al (2002) Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci USA 99:6567–6572. doi: 10.1073/pnas.082099299 CrossRefPubMedGoogle Scholar
  21. 21.
    Pierga JY, Reis-Filho JS, Cleator SJ et al (2007) Microarray-based comparative genomic hybridisation of breast cancer patients receiving neoadjuvant chemotherapy. Br J Cancer 96:341–351. doi: 10.1038/sj.bjc.6603483 CrossRefPubMedGoogle Scholar
  22. 22.
    Natrajan R, Little SE, Sodha N et al (2007) Analysis by array CGH of genomic changes associated with the progression or relapse of Wilms’ tumour. J Pathol 211:52–59. doi: 10.1002/path.2087 CrossRefPubMedGoogle Scholar
  23. 23.
    Reis-Filho JS, Drury S, Lambros MB et al (2008) ESR1 gene amplification in breast cancer: a common phenomenon? Nat Genet 40:809–810. doi: 10.1038/ng0708-809b (author reply 810–802)CrossRefPubMedGoogle Scholar
  24. 24.
    Hicks J, Krasnitz A, Lakshmi B et al (2006) Novel patterns of genome rearrangement and their association with survival in breast cancer. Genome Res 16:1465–1479. doi: 10.1101/gr.5460106 CrossRefPubMedGoogle Scholar
  25. 25.
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc [Ser A] 57:289–300Google Scholar
  26. 26.
    Jones C, Mackay A, Grigoriadis A et al (2004) Expression profiling of purified normal human luminal and myoepithelial breast cells: identification of novel prognostic markers for breast cancer. Cancer Res 64:3037–3045. doi: 10.1158/0008-5472.CAN-03-2028 CrossRefPubMedGoogle Scholar
  27. 27.
    Jonsson G, Staaf J, Olsson E et al (2007) High-resolution genomic profiles of breast cancer cell lines assessed by tiling BAC array comparative genomic hybridization. Genes Chromosomes Cancer 46:543–558. doi: 10.1002/gcc.20438 CrossRefPubMedGoogle Scholar
  28. 28.
    Savage K, Lambros MB, Robertson D et al (2007) Caveolin 1 is overexpressed and amplified in a subset of basal-like and metaplastic breast carcinomas: a morphologic, ultrastructural, immunohistochemical, and in situ hybridization analysis. Clin Cancer Res 13:90–101. doi: 10.1158/1078-0432.CCR-06-1371 CrossRefPubMedGoogle Scholar
  29. 29.
    Savage K, Leung S, Todd SK et al (2008) Distribution and significance of caveolin 2 expression in normal breast and invasive breast cancer: an immunofluorescence and immunohistochemical analysis. Breast Cancer Res Treat 110:245–256. doi: 10.1007/s10549-007-9718-1 CrossRefPubMedGoogle Scholar
  30. 30.
    Weigelt B, Kreike B, Reis-Filho JS (2008) Metaplastic breast carcinomas are basal-like breast cancers: a genomic profiling analysis. Breast Cancer Res Treat. doi: 10.1007/s10549-008-0197-9 PubMedGoogle Scholar
  31. 31.
    Natrajan R, Lambros MB, Rodrigues Pinilla SM, et al (2008) Tiling path genomic profiling of grade III invasive ductal breast cancers. Clin Cancer Res (in press)Google Scholar
  32. 32.
    Seitz S, Wassmuth P, Plaschke J et al (2003) Identification of microsatellite instability and mismatch repair gene mutations in breast cancer cell lines. Genes Chromosomes Cancer 37:29–35. doi: 10.1002/gcc.10196 CrossRefPubMedGoogle Scholar
  33. 33.
    Schlegel J, Stumm G, Scherthan H et al (1995) Comparative genomic in situ hybridization of colon carcinomas with replication error. Cancer Res 55:6002–6005PubMedGoogle Scholar
  34. 34.
    Chin SF, Teschendorff AE, Marioni JC et al (2007) High-resolution aCGH and expression profiling identifies a novel genomic subtype of ER negative breast cancer. Genome Biol 8:R215. doi: 10.1186/gb-2007-8-10-r215 CrossRefPubMedGoogle Scholar
  35. 35.
    Adelaide J, Finetti P, Bekhouche I et al (2007) Integrated profiling of basal and luminal breast cancers. Cancer Res 67:11565–11575. doi: 10.1158/0008-5472.CAN-07-2536 CrossRefPubMedGoogle Scholar
  36. 36.
    Bartek J, Bartkova J, Vojtesek B et al (1991) Aberrant expression of the p53 oncoprotein is a common feature of a wide spectrum of human malignancies. Oncogene 6:1699–1703PubMedGoogle Scholar
  37. 37.
    Hsu HC, Tseng HJ, Lai PL et al (1993) Expression of p53 gene in 184 unifocal hepatocellular carcinomas: association with tumor growth and invasiveness. Cancer Res 53:4691–4694PubMedGoogle Scholar
  38. 38.
    Lang JC, Borchers J, Danahey D et al (2002) Mutational status of overexpressed p16 in head and neck cancer: evidence for germline mutation of p16/p14ARF. Int J Oncol 21:401–408PubMedGoogle Scholar
  39. 39.
    Bernard-Pierrot I, Gruel N, Stransky N et al (2008) Characterization of the recurrent 8p11–12 amplicon identifies PPAPDC1B, a phosphatase protein, as a new therapeutic target in breast cancer. Cancer Res 68:7165–7175. doi: 10.1158/0008-5472.CAN-08-1360 CrossRefPubMedGoogle Scholar
  40. 40.
    Gelsi-Boyer V, Orsetti B, Cervera N et al (2005) Comprehensive profiling of 8p11–12 amplification in breast cancer. Mol Cancer Res 3:655–667. doi: 10.1158/1541-7786.MCR-05-0128 CrossRefPubMedGoogle Scholar
  41. 41.
    Ginestier C, Cervera N, Finetti P et al (2006) Prognosis and gene expression profiling of 20q13-amplified breast cancers. Clin Cancer Res 12:4533–4544. doi: 10.1158/1078-0432.CCR-05-2339 CrossRefPubMedGoogle Scholar
  42. 42.
    Reis-Filho JS, Simpson PT, Turner NC et al (2006) FGFR1 emerges as a potential therapeutic target for lobular breast carcinomas. Clin Cancer Res 12:6652–6662. doi: 10.1158/1078-0432.CCR-06-1164 CrossRefPubMedGoogle Scholar
  43. 43.
    Cheng KW, Lahad JP, Kuo WL et al (2004) The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nat Med 10:1251–1256. doi: 10.1038/nm1125 CrossRefPubMedGoogle Scholar
  44. 44.
    Orsetti B, Nugoli M, Cervera N et al (2004) Genomic and expression profiling of chromosome 17 in breast cancer reveals complex patterns of alterations and novel candidate genes. Cancer Res 64:6453–6460. doi: 10.1158/0008-5472.CAN-04-0756 CrossRefPubMedGoogle Scholar
  45. 45.
    Bergamaschi A, Kim YH, Wang P et al (2006) Distinct patterns of DNA copy number alteration are associated with different clinicopathological features and gene-expression subtypes of breast cancer. Genes Chromosomes Cancer 45:1033–1040. doi: 10.1002/gcc.20366 CrossRefPubMedGoogle Scholar
  46. 46.
    Farmer P, Bonnefoi H, Becette V et al (2005) Identification of molecular apocrine breast tumours by microarray analysis. Oncogene 24:4660–4671. doi: 10.1038/sj.onc.1208561 CrossRefPubMedGoogle Scholar
  47. 47.
    Rouzier R, Perou CM, Symmans WF et al (2005) Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res 11:5678–5685. doi: 10.1158/1078-0432.CCR-04-2421 CrossRefPubMedGoogle Scholar
  48. 48.
    Brown LA, Hoog J, Chin SF et al (2008) ESR1 gene amplification in breast cancer: a common phenomenon? Nat Genet 40:806–807. doi: 10.1038/ng0708-806 (author reply 810–802)CrossRefPubMedGoogle Scholar
  49. 49.
    Horlings HM, Bergamaschi A, Nordgard SH et al (2008) ESR1 gene amplification in breast cancer: a common phenomenon? Nat Genet 40:807–808. doi: 10.1038/ng0708-807 (author reply 810–802)CrossRefPubMedGoogle Scholar
  50. 50.
    Vincent-Salomon A, Raynal V, Lucchesi C et al (2008) ESR1 gene amplification in breast cancer: a common phenomenon? Nat Genet 40:809. doi: 10.1038/ng0708-809a (author reply 810–802)CrossRefPubMedGoogle Scholar
  51. 51.
    Holst F, Stahl PR, Ruiz C et al (2007) Estrogen receptor alpha (ESR1) gene amplification is frequent in breast cancer. Nat Genet 39:655–660. doi: 10.1038/ng2006 CrossRefPubMedGoogle Scholar
  52. 52.
    Lai PS, Cheah PY, Kadam P et al (2006) Overexpression of RB1 transcript is significantly correlated with 13q14 allelic imbalance in colorectal carcinomas. Int J Cancer 119:1061–1066. doi: 10.1002/ijc.21945 CrossRefPubMedGoogle Scholar
  53. 53.
    Konig A, Happle R, Bornholdt D et al (2000) Mutations in the NSDHL gene, encoding a 3beta-hydroxysteroid dehydrogenase, cause CHILD syndrome. Am J Med Genet 90:339–346. doi: 10.1002/(SICI)1096-8628(20000214)90:4<339::AID-AJMG15>3.0.CO;2-5 CrossRefPubMedGoogle Scholar
  54. 54.
    Ohashi Y, Ueda M, Kawase T et al (2004) Identification of an epigenetically silenced gene, RFX1, in human glioma cells using restriction landmark genomic scanning. Oncogene 23:7772–7779. doi: 10.1038/sj.onc.1208058 CrossRefPubMedGoogle Scholar
  55. 55.
    Reis-Filho JS, Pinheiro C, Lambros MB et al (2006) EGFR amplification and lack of activating mutations in metaplastic breast carcinomas. J Pathol 209:445–453. doi: 10.1002/path.2004 CrossRefPubMedGoogle Scholar
  56. 56.
    Iorns E, Lord CJ, Turner N et al (2007) Utilizing RNA interference to enhance cancer drug discovery. Nat Rev Drug Discov 6:556–568. doi: 10.1038/nrd2355 CrossRefPubMedGoogle Scholar
  57. 57.
    Campbell PJ, Stephens PJ, Pleasance ED et al (2008) Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat Genet 40:722–729. doi: 10.1038/ng.128 CrossRefPubMedGoogle Scholar
  58. 58.
    Albertson DG, Snijders AM, Fridlyand J et al (2006) Genomic analysis of tumors by array comparative genomic hybridization: more is better. Cancer Res 66:3955–3956. doi: 10.1158/0008-5472.CAN-05-3611 (author reply 3956)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Alan Mackay
    • 1
  • Narinder Tamber
    • 1
  • Kerry Fenwick
    • 1
  • Marjan Iravani
    • 1
  • Anita Grigoriadis
    • 1
    • 2
  • Tim Dexter
    • 1
  • Christopher J. Lord
    • 1
  • Jorge S. Reis-Filho
    • 1
  • Alan Ashworth
    • 1
  1. 1.The Breakthrough Breast Cancer Research CentreThe Institute of Cancer ResearchLondonUK
  2. 2.The Breakthrough Breast Cancer Research Unit, King’s College London School of MedicineGuy’s HospitalLondonUK

Personalised recommendations