Breast Cancer Research and Treatment

, Volume 117, Issue 2, pp 381–389 | Cite as

Plasma carotenoids, tocopherols, retinol and breast cancer risk: results from the Shanghai Women Health Study (SWHS)

  • Tsogzolmaa Dorjgochoo
  • Yu-Tang Gao
  • Wong-Ho Chow
  • Xiao-Ou Shu
  • Honglan Li
  • Gong Yang
  • Qiuyin Cai
  • Nathaniel Rothman
  • Hui Cai
  • Adrian A. Franke
  • Wei Zheng
  • Qi DaiEmail author


Evidence from some previous studies suggests that lipophilic antioxidants, particularly carotenoids, may reduce the risk of breast cancer. We prospectively investigated the associations of plasma levels of tocopherols, retinol, carotenoids with the risk of developing breast cancer among Chinese women. We conducted a study of 365 incident breast cancer cases and 726 individually matched controls nested within a large cohort study of women aged 40–70 years at baseline. We observed no associations between breast cancer risk and any of the tocopherols, retinol, and most carotenoids. However, high levels of plasma lycopene other than trans, 5- and 7-cis or trans α-cryptoxanthin were inversely associated with the risk of developing breast cancer. Our results do not support an overall protective effect of lipophilic antioxidants on breast cancer risk. The few inverse associations observed for subtype of carotenoids may need to be confirmed in future studies.


Lipophilic antioxidants Breast cancer Plasma 



The authors would like to thank the study participants and Brandy Sue Venuti for technical assistance in the preparation of this manuscript. The authors also thank Cynthia Morrison for the skillful performance of HPLC assays and thank Dr. Bob Cooney for his helpful comments. This study was supported by USPHS grant R01CA106591 as well as USPHS grant R01CA70867 and NIH intramural program (N02 CP1101066) for the parent study.


  1. 1.
    Gandini S et al (2000) Meta-analysis of studies on breast cancer risk and diet: the role of fruit and vegetable consumption and the intake of associated micronutrients. Eur J Cancer 36(5):636–646. doi: 10.1016/S0959-8049(00)00022-8 PubMedCrossRefGoogle Scholar
  2. 2.
    Malin AS et al (2003) Intake of fruits, vegetables and selected micronutrients in relation to the risk of breast cancer. Int J Cancer 105(3):413–418. doi: 10.1002/ijc.11088 PubMedCrossRefGoogle Scholar
  3. 3.
    Zhang S et al (1999) Dietary carotenoids and vitamins A, C, and E and risk of breast cancer. J Natl Cancer Inst 91(6):547–556. doi: 10.1093/jnci/91.6.547 PubMedCrossRefGoogle Scholar
  4. 4.
    Dorgan JF et al (1998) Relationships of serum carotenoids, retinol, alpha-tocopherol, and selenium with breast cancer risk: results from a prospective study in Columbia, Missouri (United States). Cancer Causes Control 9(1):89–97. doi: 10.1023/A:1008857521992 PubMedCrossRefGoogle Scholar
  5. 5.
    Machlin LJ, Bendich A (1987) Free radical tissue damage: protective role of antioxidant nutrients. FASEB J 1(6):441–445PubMedGoogle Scholar
  6. 6.
    Hunter DJ et al (1993) A prospective study of the intake of vitamins C, E, and A and the risk of breast cancer. N Engl J Med 329(4):234–240. doi: 10.1056/NEJM199307223290403 PubMedCrossRefGoogle Scholar
  7. 7.
    Verhoeven DT et al (1997) Vitamins C and E, retinol, beta-carotene and dietary fibre in relation to breast cancer risk: a prospective cohort study. Br J Cancer 75(1):149–155PubMedGoogle Scholar
  8. 8.
    Michels KB et al (2001) Dietary antioxidant vitamins, retinol, and breast cancer incidence in a cohort of Swedish women. Int J Cancer 91(4):563–567. doi:10.1002/1097-0215(200002)9999:9999<∷AID-IJC1079>3.0.CO;2-9PubMedCrossRefGoogle Scholar
  9. 9.
    Smith-Warner SA et al (2001) Intake of fruits and vegetables and risk of breast cancer: a pooled analysis of cohort studies. JAMA 285(6):769–776. doi: 10.1001/jama.285.6.769 PubMedCrossRefGoogle Scholar
  10. 10.
    Moorman PG et al (2001) Vitamin supplement use and breast cancer in a North Carolina population. Public Health Nutr 4(3):821–827PubMedCrossRefGoogle Scholar
  11. 11.
    Dorjgochoo T et al (2007) Vitamin supplement use and risk for breast cancer: the Shanghai Breast Cancer Study. Breast Cancer Res Treat 111(2):269–278PubMedCrossRefGoogle Scholar
  12. 12.
    Sato R et al (2002) Prospective study of carotenoids, tocopherols, and retinoid concentrations and the risk of breast cancer. Cancer Epidemiol Biomarkers Prev 11(5):451–457PubMedGoogle Scholar
  13. 13.
    Tamimi RM et al (2005) Plasma carotenoids, retinol, and tocopherols and risk of breast cancer. Am J Epidemiol 161(2):153–160. doi: 10.1093/aje/kwi030 PubMedCrossRefGoogle Scholar
  14. 14.
    Toniolo P et al (2001) Serum carotenoids and breast cancer. Am J Epidemiol 153(12):1142–1147. doi: 10.1093/aje/153.12.1142 PubMedCrossRefGoogle Scholar
  15. 15.
    Wald NJ et al (1984) Plasma retinol, beta-carotene and vitamin E levels in relation to the future risk of breast cancer. Br J Cancer 49(3):321–324PubMedGoogle Scholar
  16. 16.
    Yu SM et al (2003) Vitamin–mineral supplement use among US women, 2000. J Am Med Womens Assoc 58(3):157–164PubMedGoogle Scholar
  17. 17.
    Satia JA et al (1999) Study of diet, biomarkers and cancer risk in the United States, China and Costa Rica. Int J Cancer 82(1):28–32PubMedCrossRefGoogle Scholar
  18. 18.
    Yuan JM et al (2001) Prediagnostic levels of serum beta-cryptoxanthin and retinol predict smoking-related lung cancer risk in Shanghai, China. Cancer Epidemiol Biomarkers Prev 10(7):767–773PubMedGoogle Scholar
  19. 19.
    Jin F et al (1999) Cancer incidence trends in urban shanghai, 1972–1994: an update. Int J Cancer 83(4):435–440. doi:10.1002/(SICI)1097-0215(19991112)83:4<435∷AID-IJC1>3.0.CO;2-JPubMedCrossRefGoogle Scholar
  20. 20.
    Zheng W et al (2005) The Shanghai Women’s Health Study: rationale, study design, and baseline characteristics. Am J Epidemiol 162(11):1123–1131. doi: 10.1093/aje/kwi322 PubMedCrossRefGoogle Scholar
  21. 21.
    National Center for Health Statistics (2008) International Classification of Diseases, 9th revision (ICD-9). CDCGoogle Scholar
  22. 22.
    Franke AA et al (1993) Synthetic carotenoids as internal standards for plasma micronutrient analyses by high-performance liquid chromatography. J Chromatogr A 614(1):43–57CrossRefGoogle Scholar
  23. 23.
    Goodman MT et al (2007) Hawaii cohort study of serum micronutrient concentrations and clearance of incident oncogenic human papillomavirus infection of the cervix. Cancer Res 67(12):5987–5996. doi: 10.1158/0008-5472.CAN-07-0313 PubMedCrossRefGoogle Scholar
  24. 24.
    Hulten K et al (2001) Carotenoids, alpha-tocopherols, and retinol in plasma and breast cancer risk in northern Sweden. Cancer Causes Control 12(6):529–537. doi: 10.1023/A:1011271222153 PubMedCrossRefGoogle Scholar
  25. 25.
    Muller H (1996) Daily intake of carotenoids (carotenes and xanthophylls) from total diet and the carotenoid content of selected vegetables and fruit. Z Ernahrungswiss 35(1):45–50. doi: 10.1007/BF01612027 PubMedCrossRefGoogle Scholar
  26. 26.
    Schlatterer J et al (2006) Plasma responses in human subjects after ingestions of multiple doses of natural alpha-cryptoxanthin: a pilot study. Br J Nutr 92(2):371–376. doi: 10.1079/BJN20061848 CrossRefGoogle Scholar
  27. 27.
    Lian F et al (2006) Beta-cryptoxanthin suppresses the growth of immortalized human bronchial epithelial cells and non-small-cell lung cancer cells and up-regulates retinoic acid receptor beta expression. Int J Cancer 119(9):2084–2089. doi: 10.1002/ijc.22111 PubMedCrossRefGoogle Scholar
  28. 28.
    Arab L et al (2001) Participation of lycopene and beta-carotene in carcinogenesis: defenders, aggressors, or passive bystanders? Epidemiol Rev 23(2):211–230PubMedGoogle Scholar
  29. 29.
    Clinton SK et al (1996) Cis-trans lycopene isomers, carotenoids, and retinol in the human prostate. Cancer Epidemiol Biomarkers Prev 5(10):823–833PubMedGoogle Scholar
  30. 30.
    Stahl W et al (1992) Cis-trans isomers of lycopene and beta-carotene in human serum and tissues. Arch Biochem Biophys 294(1):173–177. doi: 10.1016/0003-9861(92)90153-N PubMedCrossRefGoogle Scholar
  31. 31.
    Sesso HD et al (2005) Dietary and plasma lycopene and the risk of breast cancer. Cancer Epidemiol Biomarkers Prev 14(5):1074–1081. doi: 10.1158/1055-9965.EPI-04-0683 PubMedCrossRefGoogle Scholar
  32. 32.
    Comstock GW et al (2001) The repeatability of serum carotenoid, retinoid, and tocopherol concentrations in specimens of blood collected 15 years apart. Cancer Epidemiol Biomarkers Prev 10(1):65–68PubMedGoogle Scholar
  33. 33.
    Simon MS et al (2000) An evaluation of plasma antioxidant levels and the risk of breast cancer: a pilot case control study. Breast J 6(6):388–395. doi: 10.1046/j.1524-4741.2000.20067.x PubMedCrossRefGoogle Scholar
  34. 34.
    Willett WC et al (1984) Relation of serum vitamins A and E and carotenoids to the risk of cancer. N Engl J Med 310(7):430–434PubMedCrossRefGoogle Scholar
  35. 35.
    Nomura AM et al (2003) Serum vitamins and the subsequent risk of bladder cancer. J Urol 170(4 Pt 1):1146–1150. doi: 10.1097/ PubMedCrossRefGoogle Scholar
  36. 36.
    Lee IM et al (2005) Vitamin E in the primary prevention of cardiovascular disease and cancer: the Women’s Health Study: a randomized controlled trial. JAMA 294(1):56–65. doi: 10.1001/jama.294.1.56 PubMedCrossRefGoogle Scholar
  37. 37.
    Ambrosone CB et al (1999) Manganese superoxide dismutase (MnSOD) genetic polymorphisms, dietary antioxidants, and risk of breast cancer. Cancer Res 59(3):602–606PubMedGoogle Scholar
  38. 38.
    Van Kappel AL et al (2001) Serum carotenoids as biomarkers of fruit and vegetable consumption in the New York Women’s Health Study. Public Health Nutr 4(3):829–835PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Tsogzolmaa Dorjgochoo
    • 1
  • Yu-Tang Gao
    • 3
  • Wong-Ho Chow
    • 2
  • Xiao-Ou Shu
    • 1
  • Honglan Li
    • 3
  • Gong Yang
    • 1
  • Qiuyin Cai
    • 1
  • Nathaniel Rothman
    • 2
  • Hui Cai
    • 1
  • Adrian A. Franke
    • 4
  • Wei Zheng
    • 1
  • Qi Dai
    • 1
    • 5
    Email author
  1. 1.Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer CenterVanderbilt University School of MedicineNashvilleUSA
  2. 2.Department of Health and Human Services, Division of Cancer Epidemiology and GeneticsNational Cancer Institute, NIHBethesdaUSA
  3. 3.Department of EpidemiologyShanghai Cancer InstituteShanghaiChina
  4. 4.Cancer Research Center of HawaiiUniversity of HawaiiHonoluluUSA
  5. 5.Vanderbilt Epidemiology CenterInstitute for Medicine and Public HealthNashvilleUSA

Personalised recommendations