Breast Cancer Research and Treatment

, Volume 117, Issue 3, pp 541–547 | Cite as

Quantitative bioimpedance spectroscopy for the assessment of lymphoedema

  • L. C. WardEmail author
  • S. Czerniec
  • S. L. Kilbreath
Preclinical Study


The aim was to make bioimpedance spectroscopy (BIS) quantitative for assessment of lymphoedema. Apparent resistivity coefficients were determined for the intra- and extracellular water of arms in a control cohort of women (n = 66). These coefficients were used to predict water volumes in the arms of women with lymphoedema (n = 23) and a separate control group without lymphoedema (n = 13) and to compare these with total arm size measured by perometry. Total arm volume was highly correlated (r = 0.80–0.90) with arm fluid volumes predicted by BIS and the proportional increase in arm size predicted by BIS was not significantly different to that measured by perometry. BIS predicted that the increased volume in the women with lymphoedema was predominantly (60%) due to increase in extracellular fluid. BIS is capable of quantifying the volume increase in limb size seen in lymphoedema.


Impedance Bioimpedance Lymphoedema Impedance ratio L-dex Perometery 



The willing participation of the volunteers is gratefully acknowledged.

Conflict of interest

Author Ward has consulted to Impedimed Ltd. Impedimed Ltd. had no involvement, financial or otherwise, in the conception and execution of this study or in the preparation of the manuscript.


  1. 1.
    Petrek JA, Heelan MC (1998) Incidence of breast carcinoma-related lymphedema. Cancer 83:2776–2781. doi:10.1002/(SICI)1097-0142(19981215)83:12B+<2776::AID-CNCR25>3.0.CO;2-VPubMedCrossRefGoogle Scholar
  2. 2.
    Meneses KD, McNees MP (2007) Upper extremity lymphedema after treatment for breast cancer: a review of the literature. Ostomy Wound Manage 53:16–29PubMedGoogle Scholar
  3. 3.
    Erickson VS, Pearson ML, Ganz PA et al (2001) Arm edema in breast cancer patients. J Natl Cancer Inst 93:96–111. doi: 10.1093/jnci/93.2.96 PubMedCrossRefGoogle Scholar
  4. 4.
    Sener SF, Winchester DJ, Martz CH et al (2001) Lymphedema after sentinel lymphadenectomy for breast carcinoma. Cancer 92:748–752. doi:10.1002/1097-0142(20010815)92:4<748::AID-CNCR1378>3.0.CO;2-VPubMedCrossRefGoogle Scholar
  5. 5.
    Clark B, Sitzia J, Harlow W (2005) Incidence and risk of arm oedema following treatment for breast cancer: a three-year follow-up study. QJM 98:343–348. doi: 10.1093/qjmed/hci053 PubMedCrossRefGoogle Scholar
  6. 6.
    Warren AG, Brorson H, Borud LJ et al (2007) Lymphedema: a comprehensive review. Ann Plast Surg 59:464–472. doi: 10.1097/ PubMedCrossRefGoogle Scholar
  7. 7.
    Petrek JA (2001) Lymphedema in a cohort of breast carcinoma survivors 20 years after diagnosis. Cancer 92:1368–1377. doi:10.1002/1097-0142(20010915)92:6<1368::AID-CNCR1459>3.0.CO;2-9PubMedCrossRefGoogle Scholar
  8. 8.
    Szuba A, Rockson SG (1998) Lymphedema: classification, diagnosis and therapy. Vasc Med 3:145–156PubMedGoogle Scholar
  9. 9.
    Sander AP, Hajer NM, Hemenway K et al (2002) Upper-extremity volume measurements in women with lymphedema: a comparison of measurements obtained via water displacement with geometrically determined volume. Phys Ther 82:1201–1212PubMedGoogle Scholar
  10. 10.
    Tiwari A, Cheng KS, Button M et al (2003) Differential diagnosis, investigation, and current treatment of lower limb lymphedema. Arch Surg 138:152–161. doi: 10.1001/archsurg.138.2.152 PubMedCrossRefGoogle Scholar
  11. 11.
    Ward L, Bunce I, Cornish B et al (1992) Multifrequency bioelectrical impedance augments the diagnosis and management of lymphoedema in post-mastectomy patients. Eur J Clin Invest 22:751–754. doi: 10.1111/j.1365-2362.1992.tb01440.x PubMedCrossRefGoogle Scholar
  12. 12.
    Cornish B, Chapman M, Hirst C et al (2001) Early diagnosis of lymphoedema using multiple frequency bioimpedance. Lymphology 34:2–11PubMedGoogle Scholar
  13. 13.
    Ward LC (2006) Bioelectrical impedance analysis: proven utility in lymphoedema risk assessment and therapeutic monitoring. Lymphat Res Biol 4:51–56. doi: 10.1089/lrb.2006.4.51 PubMedCrossRefGoogle Scholar
  14. 14.
    Hayes S, Cornish B, Newman B (2005) Comparison of methods to diagnose lymphoedema among breast cancer survivors: 6-month follow-up. Breast Cancer Res Treat 89:221–226. doi: 10.1007/s10549-004-2045-x PubMedCrossRefGoogle Scholar
  15. 15.
    York SL, Ward LC, Czerniec S et al (2008) Single frequency versus bioimpedance spectroscopy for the assessment of lymphedema. Breast Cancer Res Treat. doi: 10.1007/s10549-008-0090-6
  16. 16.
    Cornish BH, Bunce IH, Ward LC et al (1996) Bioelectrical impedance for monitoring the efficacy of lymphoedema treatment programmes. Breast Cancer Res Treat 38:169–176. doi: 10.1007/BF01806671 PubMedCrossRefGoogle Scholar
  17. 17.
    Ward LC, Kilbreath SL, Cornish BH (2008) Bioelectrical impedance analysis for early detection of lymphoedema. In: Weissleder H, Schuchhardt C (eds) Lymphedema Diagnosis and Therapy 4th edn. Viavital Verlag Gmbh Publ, Essen, pp 502–517Google Scholar
  18. 18.
    Schoeller DA (1996) Hydrometry. In: Roche AF, Heymsfield SB, Lohman TG (eds) Human body composition, 1st edn. Human Kinetics, Champaign, pp 25–44Google Scholar
  19. 19.
    Stanton AW, Northfield JW, Holroyd B et al (1997) Validation of an optoelectronic limb volumeter (Perometer). Lymphology 30:77–97PubMedGoogle Scholar
  20. 20.
    Johansson K, Ingvar C, Albertsson M et al (2001) Arm lymphoedema, shoulder mobility and muscle strength after breast cancer treatment—a prospective 2-year study. Adv Physiother 3:55–66CrossRefGoogle Scholar
  21. 21.
    Cornish BH, Jacobs A, Thomas BJ et al (1999) Optimizing electrode sites for segmental bioimpedance measurements. Physiol Meas 20:241–250. doi: 10.1088/0967-3334/20/3/302 PubMedCrossRefGoogle Scholar
  22. 22.
    Ward LC, Dyer JM, Byrne NM et al (2007) Validation of a three-frequency bioimpedance spectroscopic method for body composition analysis. Nutrition 23:657–664. doi: 10.1016/j.nut.2007.06.009 PubMedCrossRefGoogle Scholar
  23. 23.
    Zhu F, Kuhlmann MK, Kaysen GA et al (2006) Segment-specific resistivity improves body fluid volume estimates from bioimpedance spectroscopy in hemodialysis patients. J Appl Physiol 100:717–724. doi: 10.1152/japplphysiol.00669.2005 PubMedCrossRefGoogle Scholar
  24. 24.
    Sharpe K, Ward L, Cichero J et al (2007) Thickened fluids and water absorption in rats and humans. Dysphagia 22:193–203. doi: 10.1007/s00455-006-9072-1 PubMedCrossRefGoogle Scholar
  25. 25.
    Impedimed Ltd (2008) What you should know about lymphedema and breast cancer. Accessed 10th August 2008
  26. 26.
    Pheasant S (1990) Body space anthropometry, ergonomics and the design of work. Taylor and Francis, London, UKGoogle Scholar
  27. 27.
    Isenring E, Ward LC, Bengston J et al (2007) Bioelectrical impedance spectroscopy (BIS) predicts limb composition compared with dual energy X-ray absorptiometry (DXA). Nutr Diet 65(Suppl 2):A7–A8Google Scholar
  28. 28.
    Lin LI (1989) A concordance correlation coefficient to evaluate reproducibility. Biometrics 45:255–268. doi: 10.2307/2532051 PubMedCrossRefGoogle Scholar
  29. 29.
    Ward LC, Isenring E, Dyer J et al (2008) Constancy of resistivity coefficients for bioimpedance spectroscopy (BIS). Int J Body Compos Res 6:63–64Google Scholar
  30. 30.
    Azinge EC, Mabayoje M, Ward LC (2003) Body proportions in three Nigerian tribes. Acta Diabetol 40(Suppl 1):S317–S319. doi: 10.1007/s00592-003-0097-8 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.School of Molecular and Microbial SciencesUniversity of QueenslandSt Lucia, BrisbaneAustralia
  2. 2.Breast Cancer Research Group, Faculty of Health SciencesUniversity of SydneySydneyAustralia

Personalised recommendations