Breast Cancer Research and Treatment

, Volume 118, Issue 2, pp 345–359 | Cite as

Discovery of candidate genes and pathways that may help explain fertility cycle stage dependent post-resection breast cancer outcome

  • Eun-Young Oh
  • Patricia A. Wood
  • Xiaoming Yang
  • William J. M. Hrushesky
Preclinical Study


Breast cancer relapse and death occur more often and sooner among young pre-menopausal women. Breast cancer resected during luteal phase cures about a quarter more women than if the operation is performed during follicular phase. We have identified candidate breast cancer gene signatures that may point to the potential mechanisms of cycle stage-dependent surgical cure. We performed whole murine genome microarrays on mammary tumors resected during pre-ovulatory (diestrus, follicular) and post-ovulatory (estrus, luteal) phases of the estrous cycle with known post-surgical cure or relapse (pulmonary metastasis) outcome. A set of genes whose expressions are differentially modulated by fertility cycle stage of tumor resection and also associate with prognosis were identified. These identified genes were validated by qRT-PCR. From two independent microarray studies, we identified 90 genes in mammary tumors whose expressions change significantly (up to 100-fold) across the estrous cycle, 69 genes that are associated with cure/relapse independent of cycle stage at resection, and 24 genes that change significantly (up to 12-fold) across the estrous cycle and also associate with the outcome. The mRNA expression patterns of these 24 identified genes were 100% validated by qRT-PCR in the same samples. We have identified candidate breast cancer genes and pathways that may point to the potential mechanisms by which the post-resection breast cancer outcome is influenced by the menstrual cycle phase of cancer resection. Since human breast cancer outcome is influenced by the menstrual cycle phase of breast cancer resection, we consider this study in a mouse breast cancer model to be a proof of principle that such signatures may well exist in human premenopausal breast cancer. It remains to be determined in human breast cancer whether woman to woman and/or tumor to tumor variability will mask cycle phase dependent and outcome predictive genomic signatures in human premenopausal breast cancer. The pathways identified by these studies are potential targets for the development of peri-surgical neoadjuvant therapies, which may delay or prevent relapse by preventing dormant micrometastatic tumor cells from escaping that dormant state post-operatively.


Genomics Breast cancer Relapse risk Resection Premenopausal Fertility cycle 



These studies were supported in part by VA Merit Award (WJMH and PAW), National Institutes of Health grants R01 CA31635 and RO1 CA50749 (WJMH).

Supplementary material

10549_2008_253_MOESM1_ESM.doc (397 kb)
(DOC 397 kb)


  1. 1.
    SEER Surveillance, Epidemiology, and End Results (SEER) Program (2007) Limited-Use Data (1973–2004) (, National Cancer Institute, DCCPS, surveillance research program, cancer statistics branch, released April 2007, based on the November 2006 submission
  2. 2.
    Demicheli R et al (2007) Tumor dormancy and surgery-driven interruption of dormancy in breast cancer: learning from failures. Nat Clin Pract Oncol 4(12):699–710. doi: 10.1038/ncponc0999 CrossRefPubMedGoogle Scholar
  3. 3.
    Baum M et al (2005) Does surgery unfavourably perturb the “natural history” of early breast cancer by accelerating the appearance of distant metastases? Eur J Cancer 41(4):508–515. doi: 10.1016/j.ejca.2004.09.031 CrossRefPubMedGoogle Scholar
  4. 4.
    Kleinfeld G, Haagensen CD, Cooley E (1963) Age and menstrual status as prognostic factors in carcinoma of the breast. Ann Surg 157:600–605. doi: 10.1097/00000658-196304000-00016 CrossRefPubMedGoogle Scholar
  5. 5.
    Cooper AP (1836) In: Lee A (ed) Practice and principles of surgery. E. Cox, LondonGoogle Scholar
  6. 6.
    Beatson GT (1896) On the treatment of inoperable cases of carcinoma of the mamma: suggestions for a new method of treatment with illustrative cases. Lancet 2:104–107. doi: 10.1016/S0140-6736(01)72307-0 CrossRefGoogle Scholar
  7. 7.
    Hrushesky WJM et al (1989) Menstrual influence on surgical cure of breast cancer. Lancet 334(8869):949–952. doi: 10.1016/S0140-6736(89)90956-2 CrossRefGoogle Scholar
  8. 8.
    Powles TJ et al (1991) Timing of surgery in breast cancer. Lancet 337:164. doi: 10.1016/0140-6736(91)90816-8 CrossRefGoogle Scholar
  9. 9.
    Senie R et al (1991) Timing of breast cancer excision during the menstrual cycle influences duration of disease-free survival. Ann Intern Med 115:337–342PubMedGoogle Scholar
  10. 10.
    Meyer K (1991) Season and cycle: variation in presentation and response to therapy in premenopausal breast cancer. In proceedings of the 77th annual clinical congress, Chicago, October 21–24Google Scholar
  11. 11.
    Ville V et al (1991) Timing of surgery in breast cancer. Lancet 337:1604–1605. doi: 10.1016/0140-6736(91)92223-O CrossRefGoogle Scholar
  12. 12.
    Spratt J, Zirnheld J, Yancey J (1993) Breast cancer detection demonstration project data can determine whether the prognosis of breast cancer is affected by the time of surgery during the menstrual cycle. J Surg Oncol 53:4–9. doi: 10.1002/jso.2930530104 CrossRefPubMedGoogle Scholar
  13. 13.
    Marques L, Franco E (1993) Association between timing of surgery during menstrual cycle and prognosis in pre-menopausal breast cancer. Int J Cancer 53:707–708. doi: 10.1002/ijc.2910530430 CrossRefPubMedGoogle Scholar
  14. 14.
    Badwe R, Wang D, Gregory W (1994) Serum progesterone at the time of surgery and survival in woman with premenopausal operable breast cancer. Eur J Cancer 30A:445–448. doi: 10.1016/0959-8049(94)90415-4 CrossRefPubMedGoogle Scholar
  15. 15.
    Saad Z et al (1994) Timing of surgery in relation to the menstrual cycle in premenopausal women with operable breast cancer. Br J Surg 81:217–220. doi: 10.1002/bjs.1800810219 CrossRefPubMedGoogle Scholar
  16. 16.
    Veronesi U et al (1994) Effect of menstrual phase of surgical treatment of breast cancer. Lancet 343:1545–1547. doi: 10.1016/S0140-6736(94)92942-4 CrossRefPubMedGoogle Scholar
  17. 17.
    Harlap S et al (1998) Survival of premenopausal women with breast carcinoma: effects of menstrual timing of surgery. Cancer 83(1):76–88. doi:10.1002/(SICI)1097-0142(19980701)83:1<76∷AID-CNCR11>3.0.CO;2-9CrossRefPubMedGoogle Scholar
  18. 18.
    Stonelake P, Powell J, Dunn J (1995) Influence of timing of surgery during menstrual cycle on survival of premenopausal woman with operable breast cancer. Breast 4:19–24. doi: 10.1016/0960-9776(95)90023-3 CrossRefGoogle Scholar
  19. 19.
    Love RR et al (2002) Mastectomy and oophorectomy by menstrual cycle phase in women with operable breast cancer. J Natl Cancer Inst 94:662–669PubMedGoogle Scholar
  20. 20.
    Hagen A, Hrushesky W (1998) Menstrual timing of breast cancer surgery. Am J Surg 104:245–261. doi: 10.1016/S0002-9610(97)00294-8 CrossRefGoogle Scholar
  21. 21.
    Fentiman IS, Gregory WM, Richards MA (1994) Effects of menstrual phase on surgical treatment of breast cancer. Lancet 344:402. doi: 10.1016/S0140-6736(94)91428-1 CrossRefPubMedGoogle Scholar
  22. 22.
    Demicheli R et al (2007) Tumor dormancy and surgery-driven interruption of dormancy in breast cancer: learning from failures. Nat Clin Pract Oncol 4(12):699–710. doi: 10.1038/ncponc0999 CrossRefPubMedGoogle Scholar
  23. 23.
    Lundy J et al (1979) Immune impairment and metastatic tumor growth: the need for an immunorestorative drug as an adjunct to surgery. Cancer 43(3):945–951. doi:10.1002/1097-0142(197903)43:3<945::AID-CNCR2820430324>3.0.CO;2-VCrossRefPubMedGoogle Scholar
  24. 24.
    Romsdahl MM (1964) Influence of surgical procedures on development of spontaneous lung metastases. J Surg Res 4:363–370. doi: 10.1016/S0022-4804(64)80085-8 CrossRefPubMedGoogle Scholar
  25. 25.
    Fisher B, Fisher ER (1959) Experimental evidence in support of the dormant tumor cell. Science 130:918–919. doi: 10.1126/science.130.3380.918 CrossRefPubMedGoogle Scholar
  26. 26.
    Jones FS, Rous P (1914) On the cause of the localization of secondary tumors at points of injury. J Exp Med 20:404–412. doi: 10.1084/jem.20.4.404 CrossRefPubMedGoogle Scholar
  27. 27.
    Hrushesky WJM (1996) Breast cancer, timing of surgery, and the menstrual cycle: call for prospective trial. J Womens Health 5(6):555–565CrossRefGoogle Scholar
  28. 28.
    van ‘t Veer LJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536. doi: 10.1038/415530a CrossRefGoogle Scholar
  29. 29.
    Liu R et al (2007) The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med 356(3):217–226. doi: 10.1056/NEJMoa063994 CrossRefPubMedGoogle Scholar
  30. 30.
    van de Vijver MJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347(25):1999–2009. doi: 10.1056/NEJMoa021967 CrossRefPubMedGoogle Scholar
  31. 31.
    Wang Y et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365(9460):671–679PubMedGoogle Scholar
  32. 32.
    Tan BK et al (2008) Clinical validation of a customized multiple signature microarray for breast cancer. Clin Cancer Res 14(2):461–469. doi: 10.1158/1078-0432.CCR-07-0999 CrossRefPubMedGoogle Scholar
  33. 33.
    Feng YM et al (2006) Identification of the differentially expressed genes between primary breast cancer and paired lymph node metastasis through combining mRNA differential display and gene microarray. Zhonghua Yi Xue Za Zhi 86(39):2749–2755PubMedGoogle Scholar
  34. 34.
    Frasor J et al (2006) Gene expression preferentially regulated by tamoxifen in breast cancer cells and correlations with clinical outcome. Cancer Res 66(14):7334–7340. doi: 10.1158/0008-5472.CAN-05-4269 CrossRefPubMedGoogle Scholar
  35. 35.
    Nuyten DS et al (2006) Predicting a local recurrence after breast-conserving therapy by gene expression profiling. Breast Cancer Res 8(5):R62. doi: 10.1186/bcr1614 CrossRefPubMedGoogle Scholar
  36. 36.
    Paik S et al (2006) Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol 24(23):3726–3734. doi: 10.1200/JCO.2005.04.7985 CrossRefPubMedGoogle Scholar
  37. 37.
    Ikeda T, Jinno H, Shirane M (2007) Chemosensitivity-related genes of breast cancer detected by DNA microarray. Anticancer Res 27(4C):2649–2655PubMedGoogle Scholar
  38. 38.
    Modlich O, Prisack HB, Bojar H (2006) Breast cancer expression profiling: the impact of microarray testing on clinical decision making. Expert Opin Pharmacother 7(15):2069–2078. doi: 10.1517/14656566.7.15.2069 CrossRefPubMedGoogle Scholar
  39. 39.
    Reid JF et al (2005) Limits of predictive models using microarray data for breast cancer clinical treatment outcome. J Natl Cancer Inst 97(12):927–930PubMedCrossRefGoogle Scholar
  40. 40.
    Bove K et al (2002) Fertility cycle influence on surgical breast cancer cure. Breast Cancer Res Treat 75(1):65–72. doi: 10.1023/A:1016543222323 CrossRefPubMedGoogle Scholar
  41. 41.
    Ratajczak HV, Sothern RB, Hrushesky WJ (1988) Estrous influence on surgical cure of a mouse breast cancer. J Exp Med 168(1):73–83. doi: 10.1084/jem.168.1.73 CrossRefPubMedGoogle Scholar
  42. 42.
    Weng L et al (2006) Rosetta error model for gene expression analysis. Bioinformatics 22(9):1111–1121. doi: 10.1093/bioinformatics/btl045 CrossRefPubMedGoogle Scholar
  43. 43.
    Mylonas I et al (2007) Steroid receptors ERalpha, ERbeta, PR-A and PR-B are differentially expressed in normal and atrophic human endometrium. Histol Histopathol 22(2):169–176PubMedGoogle Scholar
  44. 44.
    Silberstein GB et al (2006) Estrogen-triggered delays in mammary gland gene expression during the estrous cycle: evidence for a novel timing system. J Endocrinol 190(2):225–239. doi: 10.1677/joe.1.06725 CrossRefPubMedGoogle Scholar
  45. 45.
    Mote PA et al (2006) Overlapping and distinct expression of progesterone receptors A and B in mouse uterus and mammary gland during the estrous cycle. Endocrinology 147(12):5503–5512. doi: 10.1210/en.2006-0040 CrossRefPubMedGoogle Scholar
  46. 46.
    Mustanoja SM et al (1999) Evidence against alpha2-adrenoceptor involvement in the regulation of rat melatonin synthesis by ambient lighting. Neuroscience 92(3):967–973. doi: 10.1016/S0306-4522(99)00057-3 CrossRefPubMedGoogle Scholar
  47. 47.
    Mustanoja SM et al (1999) Supersensitivity with reduced capacity for pineal melatonin synthesis in constant light-treated rats. J Neural Transm 106(7–8):645–655. doi: 10.1007/s007020050186 CrossRefPubMedGoogle Scholar
  48. 48.
    Boyd M, Hildebrandt R, Bristow S (1996) Expression of the estrogen receptor gene in developing and adult human breast. Breast Cancer Res Treat 37:243–251. doi: 10.1007/BF01806506 CrossRefPubMedGoogle Scholar
  49. 49.
    Soderqvist G et al (1993) Estrogen and progesterone receptor content in breast epithelial cells from healthy women during the menstrual cycle. Am J Obstet Gynecol 168(3 Pt 1):874–879PubMedGoogle Scholar
  50. 50.
    Kreitmann B, Bugat R, Bayard F (1979) Estrogen and progestin regulation of the progesterone receptor concentration in human endometrium. J Clin Endocrinol Metab 49(6):926–929CrossRefPubMedGoogle Scholar
  51. 51.
    Song RX et al (2007) Estrogen signaling via a linear pathway involving insulin-like growth factor I receptor, matrix metalloproteinases, and epidermal growth factor receptor to activate mitogen-activated protein kinase in MCF-7 breast cancer cells. Endocrinology 148(8):4091–4101. doi: 10.1210/en.2007-0240 CrossRefPubMedGoogle Scholar
  52. 52.
    Curtis CD et al (2007) Interaction of the tumor metastasis suppressor nonmetastatic protein 23 homologue H1 and estrogen receptor alpha alters estrogen-responsive gene expression. Cancer Res 67(21):10600–10607. doi: 10.1158/0008-5472.CAN-07-0055 CrossRefPubMedGoogle Scholar
  53. 53.
    Planas-Silva MD, Waltz PK (2007) Estrogen promotes reversible epithelial-to-mesenchymal-like transition and collective motility in MCF-7 breast cancer cells. J Steroid Biochem Mol Biol 104(1–2):11–21. doi: 10.1016/j.jsbmb.2006.09.039 CrossRefPubMedGoogle Scholar
  54. 54.
    Banka CL et al (2006) Estrogen induces lung metastasis through a host compartment-specific response. Cancer Res 66(7):3667–3672. doi: 10.1158/0008-5472.CAN-05-4416 CrossRefPubMedGoogle Scholar
  55. 55.
    Wood PA et al (2005) Cancer growth and spread are saltatory and phase-locked to the reproductive cycle through mediators of angiogenesis. Mol Cancer Ther 4(7):1065–1075. doi: 10.1158/1535-7163.MCT-05-0028 CrossRefPubMedGoogle Scholar
  56. 56.
    Hyder SM et al (2000) Regulation of vascular endothelial growth factor expression by estrogens and progestins. Environ Health Perspect 108(Suppl 5):785–790. doi: 10.2307/3454307 CrossRefPubMedGoogle Scholar
  57. 57.
    Saad Z et al (1998) Expression of genes that contribute to proliferative and metastatic ability in breast cancer resected during various menstrual phases. Lancet 351:1170–1173. doi: 10.1016/S0140-6736(97)07498-9 CrossRefPubMedGoogle Scholar
  58. 58.
    Wood PA, Hrushesky WJM (2005) Sex cycle modulates cancer growth. Breast Cancer Res Treat 91(1):95–102. doi: 10.1007/s10549-005-8269-6 CrossRefPubMedGoogle Scholar
  59. 59.
    Nicholson SE et al (2005) Suppressor of cytokine signaling (SOCS)-5 is a potential negative regulator of epidermal growth factor signaling. Proc Natl Acad Sci USA 102(7):2328–2333. doi: 10.1073/pnas.0409675102 CrossRefPubMedGoogle Scholar
  60. 60.
    Zhang JG et al (1999) The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation. Proc Natl Acad Sci USA 96(5):2071–2076. doi: 10.1073/pnas.96.5.2071 CrossRefPubMedGoogle Scholar
  61. 61.
    Magrangeas F et al (2000) Cloning and expression of CIS6, chromosome assignment to 3p22 and 2p21 by in situ hybridization. Cytogenet Cell Genet 88(1–2):78–81. doi: 10.1159/000015490 CrossRefPubMedGoogle Scholar
  62. 62.
    Kile BT et al (2002) The SOCS box: a tale of destruction and degradation. Trends Biochem Sci 27(5):235–241. doi: 10.1016/S0968-0004(02)02085-6 CrossRefPubMedGoogle Scholar
  63. 63.
    Lin L et al (2001) Detection of differentially expressed genes in mouse lung adenocarcinomas. Exp Lung Res 27(3):217–229. doi: 10.1080/019021401300053966 CrossRefPubMedGoogle Scholar
  64. 64.
    Tobita H et al (2006) Gene expression profile of DNA binding protein A transgenic mice. Int J Oncol 29(3):673–679PubMedGoogle Scholar
  65. 65.
    Suomela S et al (2004) Interferon alpha-inducible protein 27 (IFI27) is upregulated in psoriatic skin and certain epithelial cancers. J Invest Dermatol 122(3):717–721. doi: 10.1111/j.0022-202X.2004.22322.x CrossRefPubMedGoogle Scholar
  66. 66.
    Wild PJ et al (2005) Gene expression profiling of progressive papillary noninvasive carcinomas of the urinary bladder. Clin Cancer Res 11(12):4415–4429. doi: 10.1158/1078-0432.CCR-05-0259 CrossRefPubMedGoogle Scholar
  67. 67.
    Ayers SD et al (2007) Continuous nucleocytoplasmic shuttling underlies transcriptional activation of PPARgamma by FABP4. Biochemistry 46(23):6744–6752. doi: 10.1021/bi700047a CrossRefPubMedGoogle Scholar
  68. 68.
    Kaporis HG et al (2007) Human basal cell carcinoma is associated with Foxp3+ T cells in a Th2 dominant microenvironment. J Invest Dermatol 127(10):2391–2398. doi: 10.1038/sj.jid.5700884 CrossRefPubMedGoogle Scholar
  69. 69.
    Christa L et al (1994) Overexpression of glutamine synthetase in human primary liver cancer. Gastroenterology 106(5):1312–1320PubMedGoogle Scholar
  70. 70.
    Baglietto L et al (2007) Circulating insulin-like growth factor-I and binding protein-3 and the risk of breast cancer. Cancer Epidemiol Biomarkers Prev 16(4):763–768. doi: 10.1158/1055-9965.EPI-06-0960 CrossRefPubMedGoogle Scholar
  71. 71.
    Maor S et al (2007) Insulin-like growth factor-I controls BRCA1 gene expression through activation of transcription factor Sp1. Horm Metab Res 39(3):179–185. doi: 10.1055/s-2007-970415 CrossRefPubMedGoogle Scholar
  72. 72.
    Schaffer A et al (2007) Insulin-like growth factor-I and risk of high-grade cervical intraepithelial neoplasia. Cancer Epidemiol Biomarkers Prev 16(4):716–722. doi: 10.1158/1055-9965.EPI-06-0924 CrossRefPubMedGoogle Scholar
  73. 73.
    Subramanian A et al (2007) Evidence for a tumour suppressive function of IGF1-binding proteins in human breast cancer. Anticancer Res 27(5B):3513–3518PubMedGoogle Scholar
  74. 74.
    Vizoso F et al (2001) Lysozyme expression by breast carcinomas, correlation with clinicopathologic parameters, and prognostic significance. Ann Surg Oncol 8(8):667–674. doi: 10.1007/s10434-001-0667-3 CrossRefPubMedGoogle Scholar
  75. 75.
    Dennis JL et al (2005) Markers of adenocarcinoma characteristic of the site of origin: development of a diagnostic algorithm. Clin Cancer Res 11(10):3766–3772. doi: 10.1158/1078-0432.CCR-04-2236 CrossRefPubMedGoogle Scholar
  76. 76.
    Tappel A (2005) Lysosomal enzymes and initiation of breast cancer. Med Hypotheses 64(2):288–289. doi: 10.1016/j.mehy.2004.07.025 CrossRefPubMedGoogle Scholar
  77. 77.
    Grandin N, Charbonneau M (2007) Mrc1, a non-essential DNA replication protein, is required for telomere end protection following loss of capping by Cdc13, Yku or telomerase. Mol Genet Genomics 277(6):685–699. doi: 10.1007/s00438-007-0218-0 CrossRefPubMedGoogle Scholar
  78. 78.
    Lukashova-v Zangen I et al (2007) Ependymoma gene expression profiles associated with histological subtype, proliferation, and patient survival. Acta Neuropathol 113(3):325–337. doi: 10.1007/s00401-006-0190-5 CrossRefPubMedGoogle Scholar
  79. 79.
    Breedlove HA et al (2006) Serum selenium measurements in women with early-stage breast cancer with and without chemotherapy-induced ovarian failure. Breast Cancer Res Treat 97(3):225–230. doi: 10.1007/s10549-005-9012-z CrossRefPubMedGoogle Scholar
  80. 80.
    Yajima S et al (2007) Expression profiling of fecal colonocytes for RNA-based screening of colorectal cancer. Int J Oncol 31(5):1029–1037PubMedGoogle Scholar
  81. 81.
    Racila E et al (2006) The pattern of clinical breast cancer metastasis correlates with a single nucleotide polymorphism in the C1qA component of complement. Immunogenetics 58(1):1–8. doi: 10.1007/s00251-005-0077-y CrossRefPubMedGoogle Scholar
  82. 82.
    Liu CJ et al (2006) Array-comparative genomic hybridization to detect genomewide changes in microdissected primary and metastatic oral squamous cell carcinomas. Mol Carcinog 45(10):721–731. doi: 10.1002/mc.20213 CrossRefPubMedGoogle Scholar
  83. 83.
    Thomassen M, Tan Q, Kruse TA (2008) Gene expression meta-analysis identifies chromosomal regions and candidate genes involved in breast cancer metastasis. Breast Cancer Res Treat. doi: 10.1007/s10549-008-0038-x PubMedGoogle Scholar
  84. 84.
    Sasaki H et al (2001) Expression of Periostin, homologous with an insect cell adhesion molecule, as a prognostic marker in non-small cell lung cancers. Jpn J Cancer Res 92(8):869–873PubMedGoogle Scholar
  85. 85.
    Bao S et al (2004) Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway. Cancer Cell 5(4):329–339. doi: 10.1016/S1535-6108(04)00081-9 CrossRefPubMedGoogle Scholar
  86. 86.
    Shao R et al (2004) Acquired expression of periostin by human breast cancers promotes tumor angiogenesis through up-regulation of vascular endothelial growth factor receptor 2 expression. Mol Cell Biol 24(9):3992–4003. doi: 10.1128/MCB.24.9.3992-4003.2004 CrossRefPubMedGoogle Scholar
  87. 87.
    Furuya M et al (2004) Expression of regulator of G protein signalling protein 5 (RGS5) in the tumour vasculature of human renal cell carcinoma. J Pathol 203(1):551–558. doi: 10.1002/path.1543 CrossRefPubMedGoogle Scholar
  88. 88.
    Berger M et al (2005) Regulator of G-protein signaling-5 induction in pericytes coincides with active vessel remodeling during neovascularization. Blood 105(3):1094–1101. doi: 10.1182/blood-2004-06-2315 CrossRefPubMedGoogle Scholar
  89. 89.
    Boss CN et al (2007) Identification and characterization of T-cell epitopes deduced from RGS5, a novel broadly expressed tumor antigen. Clin Cancer Res 13(11):3347–3355. doi: 10.1158/1078-0432.CCR-06-2156 CrossRefPubMedGoogle Scholar
  90. 90.
    Han Lee ED et al (2003) Approaches toward reversal of increased vascular permeability in C1 inhibitor deficient mice. Immunol Lett 89(2–3):155–160. doi: 10.1016/S0165-2478(03)00130-5 CrossRefPubMedGoogle Scholar
  91. 91.
    Davis AEIII (2004) Biological effects of C1 inhibitor. Drug News Perspect 17(7):439–446. doi: 10.1358/dnp.2004.17.7.863703 CrossRefPubMedGoogle Scholar
  92. 92.
    Li D, Bachinski LL, Roberts R (2001) Genomic organization and isoform-specific tissue expression of human NAPOR (CUGBP2) as a candidate gene for familial arrhythmogenic right ventricular dysplasia. Genomics 74(3):396–401. doi: 10.1006/geno.2001.6558 CrossRefPubMedGoogle Scholar
  93. 93.
    Mukhopadhyay D et al (2003) CUGBP2 plays a critical role in apoptosis of breast cancer cells in response to genotoxic injury. Ann N Y Acad Sci 1010:504–509. doi: 10.1196/annals.1299.093 CrossRefPubMedGoogle Scholar
  94. 94.
    Seimiya M et al (2003) Stage-specific expression of Clast6/E3/LAPTM5 during B cell differentiation: elevated expression in human B lymphomas. Int J Oncol 22(2):301–304PubMedGoogle Scholar
  95. 95.
    Cheon YP et al (2004) Induction of cytotoxic T-lymphocyte antigen-2beta, a cysteine protease inhibitor in decidua: a potential regulator of embryo implantation. J Biol Chem 279(11):10357–10363. doi: 10.1074/jbc.M309434200 CrossRefPubMedGoogle Scholar
  96. 96.
    Ghosh A et al (2004) Crystal structure of IIGP1: a paradigm for interferon-inducible p47 resistance GTPases. Mol Cell 15(5):727–739. doi: 10.1016/j.molcel.2004.07.017 CrossRefPubMedGoogle Scholar
  97. 97.
    Pawitan Y et al (2005) False discovery rate, sensitivity and sample size for microarray studies. Bioinformatics 21(13):3017–3024. doi: 10.1093/bioinformatics/bti448 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Eun-Young Oh
    • 1
    • 2
  • Patricia A. Wood
    • 1
    • 2
  • Xiaoming Yang
    • 1
    • 2
  • William J. M. Hrushesky
    • 1
    • 2
    • 3
  1. 1.Medical Chronobiological LaboratoryWJB Dorn VA Medical CenterColumbiaUSA
  2. 2.School of MedicineUniversity of South CarolinaColumbiaUSA
  3. 3.School of Public HealthUniversity of South CarolinaColumbiaUSA

Personalised recommendations