Advertisement

Breast Cancer Research and Treatment

, Volume 118, Issue 2, pp 333–343 | Cite as

Extensive expression of craniofacial related homeobox genes in canine mammary sarcomas

  • Helena Wensman
  • Hanna Göransson
  • Karl-Johan Leuchowius
  • Sara Strömberg
  • Fredrik Pontén
  • Anders Isaksson
  • Gerard Roel Rutteman
  • Nils-Erik Heldin
  • Gunnar Pejler
  • Eva Hellmén
Preclinical Study

Abstract

The global gene expression in three types of canine mammary tumors: carcinoma, fibrosarcoma and osteosarcoma were investigated by Affymetrix gene array technology. Unsupervised clustering analysis revealed a close clustering of the respective tumor types, with fibrosarcomas clustering close to the osteosarcomas and the carcinomas clustering closer to non-malignant mammary tissues (NMTs). A number of epithelial markers were expressed in both carcinomas and NMTs, whereas the sarcomas expressed genes related to mesenchymal differentiation. A comparison of the gene expression profile of the sarcomas versus carcinoma/NMTs revealed that the sarcomas, in particular the osteosarcomas, showed a striking upregulation of a panel of homeobox genes previously linked to craniofacial bone formation. In line with this finding, osteosarcomas showed an upregulation of bone morphogenetic proteins (BMPs) and of genes associated with retinoic acid signaling. Increased homeobox gene expression in sarcomas was also confirmed at the protein level by immunohistochemical analysis of tumor tissue, and in an osteosarcoma cell line after stimulation by BMP-2. These findings suggest that the development of mammary sarcomas specifically involves triggering of a set of homeobox genes related to neural crest and craniofacial bone development.

Keywords

Canine mammary tumors Mammary sarcoma Mammary osteosarcoma Homeobox transcription factor Gene expression profiling Craniofacial 

Abbreviations

NMT

Non-malignant mammary tissues

BMP

Bone morphogenetic protein

Notes

Acknowledgments

We would like to thank Maria Rydåker for technical assistance. This work was financed by a Strategic funding from the Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden to E. Hellmén.

Author contribution

H. Wensman, E. Hellmén, H. Göransson, A. Isaksson, G.R. Rutteman and N.E. Heldin designed the study. E. Hellmén did the pathological evaluation of the tumors. H. Wensman prepared the RNA and RNA quality controls. H. Göransson performed the array data normalization, background adjustments and statistical tests. H. Wensman set up the main direction for the manuscript and array data analysis and G. Pejler, H. Göranson, N.E. Heldin, E. Hellmén and A. Isaksson contributed to the data analysis. S. Strömberg and F. Pontén contributed with novel, validated antibodies. H. Wensman performed the IH verification and H. Wensman, E. Hellmén, S. Strömberg and F. Pontén evaluated the IH results and controls. K. Leuchowius performed the immunofluorescence and the evaluation of those results. H. Wensman and G. Pejler wrote the manuscript. All Authors approved the final version of the manuscript.

Supplementary material

10549_2008_243_MOESM1_ESM.tif (9.6 mb)
Fig. 1 Supervised clustering of osteosarcomas and fibrosarcomas compared to the simple carcinoma tumors. Genes with a difference of greater than fourfold in expression between the groups and with adjusted P value < 0.0005 are shown (TIF 9793 kb)
10549_2008_243_MOESM2_ESM.pdf (34 kb)
Table 1 Genes that are upregulated in carcinomas compared to sarcomas. Genes with a difference of greater than fourfold in expression between the groups and with adjusted P value < 0.0005 are shown (PDF 34 kb)
10549_2008_243_MOESM3_ESM.pdf (42 kb)
Table 2 The connection between upregulated homeobox genes in sarcomas and craniofacial development (PDF 41 kb)

References

  1. 1.
    Young JL Jr, Ward KC, Wingo PA et al (2004) The incidence of malignant non-carcinomas of the female breast. Cancer Causes Control 15:313–319. doi: 10.1023/B:CACO.0000024224.70386.d1 CrossRefPubMedGoogle Scholar
  2. 2.
    Silver SA, Tavassoli FA (1998) Primary osteogenic sarcoma of the breast: a clinicopathologic analysis of 50 cases. Am J Surg Pathol 22:925–933. doi: 10.1097/00000478-199808000-00002 CrossRefPubMedGoogle Scholar
  3. 3.
    Adem C, Reynolds C, Ingle JN et al (2004) Primary breast sarcoma: clinicopathologic series from the Mayo Clinic and review of the literature. Br J Cancer 91:237–241PubMedGoogle Scholar
  4. 4.
    Blanchard DK, Reynolds CA, Grant CS et al (2003) Primary nonphylloides breast sarcomas. Am J Surg 186:359–361. doi: 10.1016/S0002-9610(03)00269-1 CrossRefPubMedGoogle Scholar
  5. 5.
    Gullett NP, Delman K, Folpe AL et al (2007) National surgical patterns of care: regional lymphadenectomy of breast sarcomas. Am J Clin Oncol 30:461–465. doi: 10.1097/COC.0b013e31804b40f4 CrossRefPubMedGoogle Scholar
  6. 6.
    Fong Y, Coit DG, Woodruff JM et al (1993) Lymph node metastasis from soft tissue sarcoma in adults. Analysis of data from a prospective database of 1772 sarcoma patients. Ann Surg 217:72–77. doi: 10.1097/00000658-199301000-00012 CrossRefPubMedGoogle Scholar
  7. 7.
    Lana SE, Rutteman GR, Withrow SJ (2007) Tumors of the mammary gland. In: Withrow SJ, Vail DM (eds) Withrow & MacEwen’s small animal clinical oncology, 4th edn. Saunders, Missouri, pp 619–636Google Scholar
  8. 8.
    Bostock DE (1986) Canine and feline mammary neoplasms. Br Vet J 142:506–515PubMedGoogle Scholar
  9. 9.
    Paoloni M, Khanna C (2008) Translation of new cancer treatments from pet dogs to humans. Nat Rev Cancer 8:147–156. doi: 10.1038/nrc2273 CrossRefPubMedGoogle Scholar
  10. 10.
    Lindblad-Toh K, Wade CM, Mikkelsen TS et al (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438:803–819. doi: 10.1038/nature04338 CrossRefPubMedGoogle Scholar
  11. 11.
    Hoffman MM, Birney E (2007) Estimating the neutral rate of nucleotide substitution using introns. Mol Biol Evol 24:522–531. doi: 10.1093/molbev/msl179 CrossRefPubMedGoogle Scholar
  12. 12.
    Chu LL, Rutteman GR, Kong JM et al (1998) Genomic organization of the canine p53 gene and its mutational status in canine mammary neoplasia. Breast Cancer Res Treat 50:11–25. doi: 10.1023/A:1006010526813 CrossRefPubMedGoogle Scholar
  13. 13.
    Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874. doi: 10.1073/pnas.191367098 CrossRefPubMedGoogle Scholar
  14. 14.
    Sorlie T, Tibshirani R, Parker J et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100:8418–8423. doi: 10.1073/pnas.0932692100 CrossRefPubMedGoogle Scholar
  15. 15.
    Van’t Veer LJ, Dai H, Van De Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536. doi: 10.1038/415530a CrossRefGoogle Scholar
  16. 16.
    Buyse M, Loi S, Van’t Veer L et al (2006) Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 98:1183–1192PubMedCrossRefGoogle Scholar
  17. 17.
    Paik S, Shak S, Tang G et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351:2817–2826. doi: 10.1056/NEJMoa041588 CrossRefPubMedGoogle Scholar
  18. 18.
    Fan C, Oh DS, Wessels L et al (2006) Concordance among gene-expression-based predictors for breast cancer. N Engl J Med 355:560–569. doi: 10.1056/NEJMoa052933 CrossRefPubMedGoogle Scholar
  19. 19.
    Baird K, Davis S, Antonescu CR et al (2005) Gene expression profiling of human sarcomas: insights into sarcoma biology. Cancer Res 65:9226–9235. doi: 10.1158/0008-5472.CAN-05-1699 CrossRefPubMedGoogle Scholar
  20. 20.
    Francis P, Namlos HM, Muller C et al (2007) Diagnostic and prognostic gene expression signatures in 177 soft tissue sarcomas: hypoxia-induced transcription profile signifies metastatic potential. BMC Genomics 8:73. doi: 10.1186/1471-2164-8-73 CrossRefPubMedGoogle Scholar
  21. 21.
    Dobreva G, Chahrour M, Dautzenberg M et al (2006) SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation. Cell 125:971–986. doi: 10.1016/j.cell.2006.05.012 CrossRefPubMedGoogle Scholar
  22. 22.
    Phippard DJ, Weber-Hall SJ, Sharpe PT et al (1996) Regulation of Msx-1, Msx-2, Bmp-2 and Bmp-4 during foetal and postnatal mammary gland development. Development 122:2729–2737PubMedGoogle Scholar
  23. 23.
    Satoh K, Hovey RC, Malewski T et al (2007) Progesterone enhances branching morphogenesis in the mouse mammary gland by increased expression of Msx2. Oncogene 26:7526–7534. doi: 10.1038/sj.onc.1210555 CrossRefPubMedGoogle Scholar
  24. 24.
    Chen H, Sukumar S (2003) Role of homeobox genes in normal mammary gland development and breast tumorigenesis. J Mammary Gland Biol Neoplasia 8:159–175. doi: 10.1023/A:1025996707117 CrossRefPubMedGoogle Scholar
  25. 25.
    Elloul S, Elstrand MB, Nesland JM et al (2005) Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer 103:1631–1643. doi: 10.1002/cncr.20946 CrossRefPubMedGoogle Scholar
  26. 26.
    Zhai Y, Kuick R, Nan B et al (2007) Gene expression analysis of preinvasive and invasive cervical squamous cell carcinomas identifies HOXC10 as a key mediator of invasion. Cancer Res 67:10163–10172. doi: 10.1158/0008-5472.CAN-07-2056 CrossRefPubMedGoogle Scholar
  27. 27.
    Barnes GL, Javed A, Waller SM et al (2003) Osteoblast-related transcription factors Runx2 (Cbfa1/AML3) and MSX2 mediate the expression of bone sialoprotein in human metastatic breast cancer cells. Cancer Res 63:2631–2637PubMedGoogle Scholar
  28. 28.
    Han HJ, Russo J, Kohwi Y et al (2008) SATB1 reprogrammes gene expression to promote breast tumour growth and metastasis. Nature 452:187–193. doi: 10.1038/nature06781 CrossRefPubMedGoogle Scholar
  29. 29.
    Hartwell KA, Muir B, Reinhardt F et al (2006) The Spemann organizer gene, Goosecoid, promotes tumor metastasis. Proc Natl Acad Sci USA 103:18969–18974. doi: 10.1073/pnas.0608636103 CrossRefPubMedGoogle Scholar
  30. 30.
    Comijn J, Berx G, Vermassen P et al (2001) The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7:1267–1278. doi: 10.1016/S1097-2765(01)00260-X CrossRefPubMedGoogle Scholar
  31. 31.
    Irizarry RA, Hobbs B, Collin F et al (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264. doi: 10.1093/biostatistics/4.2.249 CrossRefPubMedGoogle Scholar
  32. 32.
    Smyth Gk (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:Article3Google Scholar
  33. 33.
    Hochberg Y, Benjamini Y (1990) More powerful procedures for multiple significance testing. Stat Med 9:811–818. doi: 10.1002/sim.4780090710 CrossRefPubMedGoogle Scholar
  34. 34.
    Sturn A, Quackenbush J, Trajanoski Z (2002) Genesis: cluster analysis of microarray data. Bioinformatics 18:207–208. doi: 10.1093/bioinformatics/18.1.207 CrossRefPubMedGoogle Scholar
  35. 35.
    Uhlen M, Bjorling E, Agaton C et al (2005) A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics 4:1920–1932. doi: 10.1074/mcp.M500279-MCP200 CrossRefPubMedGoogle Scholar
  36. 36.
    Uhlen M, Ponten F (2005) Antibody-based proteomics for human tissue profiling. Mol Cell Proteomics 4:384–393. doi: 10.1074/mcp.R500009-MCP200 CrossRefPubMedGoogle Scholar
  37. 37.
    Persson U, Izumi H, Souchelnytskyi S et al (1998) The L45 loop in type I receptors for TGF-beta family members is a critical determinant in specifying Smad isoform activation. FEBS Lett 434:83–87. doi: 10.1016/S0014-5793(98)00954-5 CrossRefPubMedGoogle Scholar
  38. 38.
    Perez-Pinera P, Berenson JR, Deuel TF (2008) Pleiotrophin, a multifunctional angiogenic factor: mechanisms and pathways in normal and pathological angiogenesis. Curr Opin Hematol 15:210–214. doi: 10.1097/MOH.0b013e3282fdc69e CrossRefPubMedGoogle Scholar
  39. 39.
    Coussens Ak, Hughes Ip, Wilkinson Cr et al (2008) Identification of genes differentially expressed by prematurely fused human sutures using a novel in vivo–in vitro approach. Differentiation 76(5):531–545Google Scholar
  40. 40.
    Daftary GS, Taylor HS (2006) Endocrine regulation of HOX genes. Endocr Rev 27:331–355. doi: 10.1210/er.2005-0018 CrossRefPubMedGoogle Scholar
  41. 41.
    Williams SS, Mear JP, Liang HC et al (2004) Large-scale reprogramming of cranial neural crest gene expression by retinoic acid exposure. Physiol Genomics 19:184–197. doi: 10.1152/physiolgenomics.00136.2004 CrossRefPubMedGoogle Scholar
  42. 42.
    Liem KF Jr, Tremml G, Roelink H et al (1995) Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 82:969–979. doi: 10.1016/0092-8674(95)90276-7 CrossRefPubMedGoogle Scholar
  43. 43.
    Tribulo C, Aybar MJ, Nguyen VH et al (2003) Regulation of Msx genes by a Bmp gradient is essential for neural crest specification. Development 130:6441–6452. doi: 10.1242/dev.00878 CrossRefPubMedGoogle Scholar
  44. 44.
    Trainor PA, Melton KR, Manzanares M (2003) Origins and plasticity of neural crest cells and their roles in jaw and craniofacial evolution. Int J Dev Biol 47:541–553PubMedGoogle Scholar
  45. 45.
    Bandyopadhyay A, Tsuji K, Cox K et al (2006) Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis. PLoS Genet 2:e216. doi: 10.1371/journal.pgen.0020216 CrossRefPubMedGoogle Scholar
  46. 46.
    Von Bubnoff A, Cho KW (2001) Intracellular BMP signaling regulation in vertebrates: pathway or network? Dev Biol 239:1–14. doi: 10.1006/dbio.2001.0388 CrossRefGoogle Scholar
  47. 47.
    Verschueren K, Remacle JE, Collart C et al (1999) SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5′-CACCT sequences in candidate target genes. J Biol Chem 274:20489–20498. doi: 10.1074/jbc.274.29.20489 CrossRefPubMedGoogle Scholar
  48. 48.
    Yamada G, Mansouri A, Torres M et al (1995) Targeted mutation of the murine goosecoid gene results in craniofacial defects and neonatal death. Development 121:2917–2922PubMedGoogle Scholar
  49. 49.
    Ishii M, Han J, Yen HY et al (2005) Combined deficiencies of Msx1 and Msx2 cause impaired patterning and survival of the cranial neural crest. Development 132:4937–4950. doi: 10.1242/dev.02072 CrossRefPubMedGoogle Scholar
  50. 50.
    Hosokawa R, Urata M, Han J et al (2007) TGF-beta mediated Msx2 expression controls occipital somites-derived caudal region of skull development. Dev Biol 310:140–153. doi: 10.1016/j.ydbio.2007.07.038 CrossRefPubMedGoogle Scholar
  51. 51.
    Robledo RF, Rajan L, Li X et al (2002) The Dlx5 and Dlx6 homeobox genes are essential for craniofacial, axial, and appendicular skeletal development. Genes Dev 16:1089–1101. doi: 10.1101/gad.988402 CrossRefPubMedGoogle Scholar
  52. 52.
    Lu MF, Cheng HT, Kern MJ et al (1999) prx-1 functions cooperatively with another paired-related homeobox gene, prx-2, to maintain cell fates within the craniofacial mesenchyme. Development 126:495–504PubMedGoogle Scholar
  53. 53.
    Van De Putte T, Maruhashi M, Francis A et al (2003) Mice lacking ZFHX1B, the gene that codes for Smad-interacting protein-1, reveal a role for multiple neural crest cell defects in the etiology of Hirschsprung disease-mental retardation syndrome. Am J Hum Genet 72:465–470. doi: 10.1086/346092 CrossRefPubMedGoogle Scholar
  54. 54.
    Golding JP, Trainor P, Krumlauf R et al (2000) Defects in pathfinding by cranial neural crest cells in mice lacking the neuregulin receptor ErbB4. Nat Cell Biol 2:103–109. doi: 10.1038/35000058 CrossRefPubMedGoogle Scholar
  55. 55.
    Nielsen TO, West RB, Linn SC et al (2002) Molecular characterisation of soft tissue tumours: a gene expression study. Lancet 359:1301–1307. doi: 10.1016/S0140-6736(02)08270-3 CrossRefPubMedGoogle Scholar
  56. 56.
    Tschoep K, Kohlmann A, Schlemmer M et al (2007) Gene expression profiling in sarcomas. Crit Rev Oncol Hematol 63:111–124. doi: 10.1016/j.critrevonc.2007.04.001 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Helena Wensman
    • 1
  • Hanna Göransson
    • 2
  • Karl-Johan Leuchowius
    • 3
  • Sara Strömberg
    • 3
  • Fredrik Pontén
    • 3
  • Anders Isaksson
    • 2
  • Gerard Roel Rutteman
    • 4
  • Nils-Erik Heldin
    • 3
  • Gunnar Pejler
    • 1
  • Eva Hellmén
    • 1
  1. 1.Department of Anatomy, Physiology and BiochemistrySwedish University of Agricultural SciencesUppsalaSweden
  2. 2.Department of Medical SciencesUppsala UniversityUppsalaSweden
  3. 3.Department of Genetics and PathologyUppsala UniversityUppsalaSweden
  4. 4.Department of Clinical Sciences of Companion Animals, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations