Breast Cancer Research and Treatment

, Volume 117, Issue 1, pp 151–159 | Cite as

Low penetrance breast cancer predisposition SNPs are site specific

  • Niall Mcinerney
  • Gabrielle Colleran
  • Andrew Rowan
  • Axel Walther
  • Ella Barclay
  • Sarah Spain
  • Angela M. Jones
  • Stephen Tuohy
  • Catherine Curran
  • Nicola Miller
  • Michael Kerin
  • Ian Tomlinson
  • Elinor Sawyer
Epidemiology

Abstract

Large scale association studies have identified low penetrance susceptibility alleles that predispose to breast cancer. A locus on chromosome 8q24.21 has been shown to harbour variants that predispose to breast, ovarian, colorectal and prostate cancer. The finding of risk variants clustering at 8q24 suggests that there may be common susceptibility alleles that predispose to more than one epithelial cancer. The aim of this study was firstly to determine whether previously identified breast cancer susceptibility alleles are associated with sporadic breast cancer in the West of Ireland and secondly to ascertain whether there are susceptibility alleles that predispose to all three common epithelial cancers (breast, prostate, colon). We genotyped a panel of 24 SNPs that have recently been shown to predispose to prostate, colorectal or breast cancer in 988 sporadic breast cancer cases and 1,016 controls from the West of Ireland. We then combined our data with publicly available datasets using standard techniques of meta-analysis. The known breast cancer SNPs rs13281615, rs2981582 and rs3803662 were confirmed as associated with breast cancer risk (Pallelic test = 1.8 × 10−2, OR = 1.17; Pallelic test = 2.2 × 10−3, OR = 1.22; Pallelic test = 5.1 × 10−2, OR = 1.15, respectively) in the West of Ireland cohort. For the remaining five breast cancer SNPs that were studied there was no evidence of an association with breast cancer in the West Ireland population (Pallelic test > 6.5 × 10−2). There was also no association between any of the prostate or colorectal susceptibility SNPs, whether at 8q24 or elsewhere, with breast cancer risk. Meta-analysis confirmed that all susceptibility SNPs were site specific, with the exception of rs6983269 which is known to predispose to both colorectal and prostate cancer. This study confirms that susceptibility loci at FGFR2, 8q24 and TNCR9 predispose to sporadic breast cancer in the West of Ireland. It also suggests that low penetrance susceptibility SNPs for breast, prostate and colorectal cancer are distinct. Although 8q24 harbours variants that predispose to all three cancers, the susceptibility loci within the region appear to be specific for the different cancer types with the exception of rs6983269 in colon and prostate cancer.

Keywords

Breast cancer Colorectal cancer Prostate cancer Genetic susceptibility 8q24 West Ireland 

Supplementary material

10549_2008_235_MOESM1_ESM.pdf (35 kb)
(PDF 35 kb)

References

  1. 1.
    Antoniou AC, Easton DF (2006) Models of genetic susceptibility to breast cancer. Oncogene 25(43):5898–5905. doi:10.1038/sj.onc.1209879 PubMedCrossRefGoogle Scholar
  2. 2.
    Pharoah PD, Antoniou A, Bobrow M et al (2002) Polygenic susceptibility to breast cancer and implications for prevention. Nat Genet 31(1):33–36. doi:10.1038/ng853 PubMedCrossRefGoogle Scholar
  3. 3.
    Easton DF, Pooley KA, Dunning AM et al (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447(7148):1087–1093. doi:10.1038/nature05887 PubMedCrossRefGoogle Scholar
  4. 4.
    Hunter DJ, Kraft P, Jacobs KB et al (2007) A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 39(7):870–874. doi:10.1038/ng2075 PubMedCrossRefGoogle Scholar
  5. 5.
    Stacey SN, Manolescu A, Sulem P et al (2007) Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet 39(7):865–869. doi:10.1038/ng2064 PubMedCrossRefGoogle Scholar
  6. 6.
    Stacey SN, Manolescu A, Sulem P et al (2008) Common variants on chromosome 5p12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet 40(6):703–706. doi:10.1038/ng.131 PubMedCrossRefGoogle Scholar
  7. 7.
    Driver KE, Song H, Lesueur F et al (2008) Association of single-nucleotide polymorphisms in the cell cycle genes with breast cancer in the British population. Carcinogenesis 29(2):333–341. doi:10.1093/carcin/bgm284 PubMedCrossRefGoogle Scholar
  8. 8.
    Ma H, Jin G, Hu Z et al (2006) Variant genotypes of CDKN1A and CDKN1B are associated with an increased risk of breast cancer in Chinese women. Int J Cancer 119(9):2173–2178. doi:10.1002/ijc.22094 PubMedCrossRefGoogle Scholar
  9. 9.
    Amundadottir LT, Sulem P, Gudmundsson J et al (2006) A common variant associated with prostate cancer in European and African populations. Nat Genet 38(6):652–658. doi:10.1038/ng1808 PubMedCrossRefGoogle Scholar
  10. 10.
    Freedman ML, Haiman CA, Patterson N et al (2006) Admixture mapping identifies 8q24 as a prostate cancer risk locus in African–American men. Proc Natl Acad Sci USA 10338:14068–14073. doi:10.1073/pnas.0605832103 CrossRefGoogle Scholar
  11. 11.
    Gudmundsson J, Sulem P, Manolescu A et al (2007) Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet 39(5):631–637. doi:10.1038/ng1999 PubMedCrossRefGoogle Scholar
  12. 12.
    Haiman CA, Patterson N, Freedman ML et al (2007) Multiple regions within 8q24 independently affect risk for prostate cancer. Nat Genet 39(5):638–644. doi:10.1038/ng2015 PubMedCrossRefGoogle Scholar
  13. 13.
    Yeager M, Orr N, Hayes RB et al (2007) Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet 39(5):645–649. doi:10.1038/ng2022 PubMedCrossRefGoogle Scholar
  14. 14.
    Schumacher FR, Feigelson HS, Cox DG et al (2007) A common 8q24 variant in prostate and breast cancer from a large nested case–control study. Cancer Res 67(7):2951–2956. doi:10.1158/0008-5472.CAN-06-3591 PubMedCrossRefGoogle Scholar
  15. 15.
    Tomlinson I, Webb E, Carvajal-Carmona L et al (2007) A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat Genet 39(8):984–988. doi:10.1038/ng2085 PubMedCrossRefGoogle Scholar
  16. 16.
    Zanke BW, Greenwood CM, Rangrej J et al (2007) Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nat Genet 39(8):989–994. doi:10.1038/ng2089 PubMedCrossRefGoogle Scholar
  17. 17.
    Ghoussaini M, Song H, Koessler T et al (2008) Multiple loci with different cancer specificities within the 8q24 gene desert. J Natl Cancer Inst 100(13):962–966. doi:10.1093/jnci/djn190 PubMedCrossRefGoogle Scholar
  18. 18.
    Witte JS (2007) Multiple prostate cancer risk variants on 8q24. Nat Genet 39(5):579–580. doi:10.1038/ng0507-579 PubMedCrossRefGoogle Scholar
  19. 19.
    Houlston RS, Peto J (2004) Genetics and the common cancers. In Eeles RA, Easton DF, Ponder BAJ, Eng C (eds) Genetic predisposition to cancer, 2nd edn, Arnold, LondonGoogle Scholar
  20. 20.
    Eeles RA, Kote-Jarai Z, Giles GG et al (2008) Multiple newly identified loci associated with prostate cancer susceptibility. Nat Genet 40(3):316–321. doi:10.1038/ng.90 PubMedCrossRefGoogle Scholar
  21. 21.
    Thomas G, Jacobs KB, Yeager M et al (2008) Multiple loci identified in a genome-wide association study of prostate cancer. Nat Genet 40(3):310–315. doi:10.1038/ng.91 PubMedCrossRefGoogle Scholar
  22. 22.
    Gudmundsson J, Sulem P, Rafnar T et al (2008) Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer. Nat Genet 40(3):281–283. doi:10.1038/ng.89 PubMedCrossRefGoogle Scholar
  23. 23.
    Jaeger E, Webb E, Howarth K et al (2008) Common genetic variants at the CRAC1 (HMPS) locus on chromosome 15q13.3 influence colorectal cancer risk. Nat Genet 40(1):26–28. doi:10.1038/ng.2007.41 PubMedCrossRefGoogle Scholar
  24. 24.
    Tenesa A, Farrington SM, Prendergast JG et al (2008) Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nat Genet 40(5):631–637. doi:10.1038/ng.133 PubMedCrossRefGoogle Scholar
  25. 25.
    Broderick P, Carvajal-Carmona L, Pittman AM et al (2007) A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk. Nat Genet 39(11):1315–1317. doi:10.1038/ng.2007.18 PubMedCrossRefGoogle Scholar
  26. 26.
    Tomlinson IP, Webb E, Carvajal-Carmona L et al (2008) A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3. Nat Genet 40(5):623–630. doi:10.1038/ng.111 PubMedCrossRefGoogle Scholar
  27. 27.
    Houlston RS, Webb E, Broderick P et al (2008) Meta-analysis of genome-wide association data identifies 4 novel susceptibility loci for colorectal cancer. Nat Genet (in press)Google Scholar
  28. 28.
    Hill EW, Jobling MA, Bradley DG (2000) Y-chromosome variation and Irish origins. Nat Genet 404(6776):351–352. doi:10.1038/35006158 CrossRefGoogle Scholar
  29. 29.
    Marchini J, Howie B, Myers S et al (2007) A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 39(7):906–913. doi:10.1038/ng2088 PubMedCrossRefGoogle Scholar
  30. 30.
    Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560. doi:10.1136/bmj.327.7414.557 PubMedCrossRefGoogle Scholar
  31. 31.
    Fletcher O, Johnson N, Gibson L et al (2008) Association of genetic variants at 8q24 with breast cancer risk. Cancer Epidemiol Biomarkers Prev 17(3):702–705. doi:10.1158/1055-9965.EPI-07-2564 PubMedCrossRefGoogle Scholar
  32. 32.
    Garcia-Closas M, Hall P, Nevanlinna H et al (2008) Heterogeneity of breast cancer associations with five susceptibility Loci by clinical and pathological characteristics. PLoS Genet 4(4):1–10. doi:10.1371/journal.pgen.1000054 CrossRefGoogle Scholar
  33. 33.
    Wang GY, Lu CQ, Zhang RM et al (2008) The E-cadherin gene polymorphism 160C-> A and cancer risk: a HuGE review and meta-analysis of 26 case-control studies. Am J Epidemiol 167(1):7–14PubMedCrossRefGoogle Scholar
  34. 34.
    Qureshi HS, Linden MD, Divine G et al (2006) E-cadherin status in breast cancer correlates with histologic type but does not correlate with established prognostic parameters. Am J Clin Pathol 125(3):377–385PubMedGoogle Scholar
  35. 35.
    Masciari S, Larsson N, Senz J et al (2007) Germline E-cadherin mutations in familial lobular breast cancer. J Med Genet 44(11):726–731. doi:10.1136/jmg.2007.051268 PubMedCrossRefGoogle Scholar
  36. 36.
    Solé X, Hernández P, de Heredia ML et al (2008) Genetic and genomic analysis modeling of germline c-MYC overexpression and cancer susceptibility. BMC Genomics 9:12. doi:10.1186/1471-2164-9-12 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Niall Mcinerney
    • 1
    • 2
  • Gabrielle Colleran
    • 1
    • 2
  • Andrew Rowan
    • 2
  • Axel Walther
    • 2
  • Ella Barclay
    • 2
  • Sarah Spain
    • 2
  • Angela M. Jones
    • 2
  • Stephen Tuohy
    • 1
    • 2
  • Catherine Curran
    • 1
  • Nicola Miller
    • 1
  • Michael Kerin
    • 1
  • Ian Tomlinson
    • 2
  • Elinor Sawyer
    • 2
    • 3
  1. 1.Department of Surgery, Clinical Science InstituteUniversity College HospitalGalwayIreland
  2. 2.Molecular and Population Genetics Laboratory, Cancer Research UKLondonUK
  3. 3.Department of Academic Oncology, Guy’s, King’s, St Thomas’ Cancer Centre, Guy’s HospitalLondonUK

Personalised recommendations