Advertisement

Breast Cancer Research and Treatment

, Volume 118, Issue 1, pp 213–228 | Cite as

Fish oil targets PTEN to regulate NFκB for downregulation of anti-apoptotic genes in breast tumor growth

  • Triparna Ghosh-Choudhury
  • Chandi C. Mandal
  • Kathleen Woodruff
  • Patricia St Clair
  • Gabriel Fernandes
  • Goutam G. Choudhury
  • Nandini Ghosh-ChoudhuryEmail author
Brief Report

Abstract

The molecular mechanism for the beneficial effect of fish oil on breast tumor growth is largely undefined. Using the xenograft model in nude mice, we for the first time report that the fish oil diet significantly increased the level of PTEN protein in the breast tumors. In addition, the fish oil diet attenuated the PI 3 kinase and Akt kinase activity in the tumors leading to significant inhibition of NFκB activation. Fish oil diet also prevented the expression of anti-apoptotic proteins Bcl-2 and Bcl-XL in the breast tumors with concomitant increase in caspase 3 activity. To extend these findings we tested the functional effects of DHA and EPA, the two active ω-3 fatty acids of fish oil, on cultured MDA MB-231 cells. In agreement with our in vivo data, DHA and EPA treatment increased PTEN mRNA and protein expression and inhibited the phosphorylation of p65 subunit of NFκB in MDA MB-231 cells. Furthermore, DHA and EPA reduced expression of Bcl-2 and Bcl-XL. NFκB DNA binding activity and NFκB-dependent transcription of Bcl-2 and Bcl-XL genes were also prevented by DHA and EPA treatment. Finally, we showed that PTEN expression significantly inhibited NFκB-dependent transcription of Bcl-2 and Bcl-XL genes. Taken together, our data reveals a novel signaling pathway linking the fish oil diet to increased PTEN expression that attenuates the growth promoting signals and augments the apoptotic signals, resulting in breast tumor regression.

Keywords

PTEN NFκB DHA EPA Breast tumor growth Apoptotic signal 

Abbreviations

DHA

Docosahexaenoic acid

EPA

Eicosapentaenoic acid

PI

Phosphatidylinositol

PH

Pleckstrin homology

EMSA

Electrophoretic mobility shift assay

LUC

Luciferase

Notes

Acknowledgments

This work was supported by the NIH RO1 AR52425, DOD Breast cancer Concept Award, Morrison Trust Fund and VA Merit Review grants to NGC. GGC is supported by NIH RO1 DK 50190, VA Merit Review and Juvenile Diabetes Research Foundation Regular Research Grants. GGC is recipient of the Research Career Scientist Award from the Department of Veterans Affairs. GF is supported by NIH RO1 AG023648.

Supplementary material

10549_2008_227_MOESM1_ESM.tif (154 kb)
Supplementary Figure 1 (TIF 155 kb)
10549_2008_227_MOESM2_ESM.tif (86 kb)
Supplementary Figure 2 (TIF 86 kb)
10549_2008_227_MOESM3_ESM.tif (87 kb)
Supplementary Figure 3 (TIF 88 kb)
10549_2008_227_MOESM4_ESM.tif (87 kb)
Supplementary Figure 4 (TIF 88 kb)

References

  1. 1.
    MacLean CH, Newberry SJ, Mojica WA, Khanna P, Issa AM, Suttorp MJ, Lim YW, Traina SB, Hilton L, Garland R et al (2006) Effects of omega-3 fatty acids on cancer risk: a systematic review. JAMA 295(4):403–415. doi: 10.1001/jama.295.4.403 PubMedCrossRefGoogle Scholar
  2. 2.
    Kelsey JL, Horn-Ross PL (1993) Breast cancer: magnitude of the problem and descriptive epidemiology. Epidemiol Rev 15(1):7–16PubMedGoogle Scholar
  3. 3.
    Lands WE, Hamazaki T, Yamazaki K, Okuyama H, Sakai K, Goto Y, Hubbard VS (1990) Changing dietary patterns. Am J Clin Nutr 51(6):991–993PubMedGoogle Scholar
  4. 4.
    Chajes V, Sattler W, Stranzl A, Kostner GM (1995) Influence of n-3 fatty acids on the growth of human breast cancer cells in vitro: relationship to peroxides and vitamin-E. Breast Cancer Res Treat 34(3):199–212. doi: 10.1007/BF00689711 PubMedCrossRefGoogle Scholar
  5. 5.
    Grammatikos SI, Subbaiah PV, Victor TA, Miller WM (1994) n-3 and n-6 fatty acid processing and growth effects in neoplastic and non-cancerous human mammary epithelial cell lines. Br J Cancer 70(2):219–227PubMedGoogle Scholar
  6. 6.
    Rose DP, Connolly JM (1999) Omega-3 fatty acids as cancer chemopreventive agents. Pharmacol Ther 83(3):217–244. doi: 10.1016/S0163-7258(99)00026-1 PubMedCrossRefGoogle Scholar
  7. 7.
    Schley PD, Jijon HB, Robinson LE, Field CJ (2005) Mechanisms of omega-3 fatty acid-induced growth inhibition in MDA-MB-231 human breast cancer cells. Breast Cancer Res Treat 92(2):187–195. doi: 10.1007/s10549-005-2415-z PubMedCrossRefGoogle Scholar
  8. 8.
    Schley PD, Brindley DN, Field CJ (2007) (n-3) PUFA alter raft lipid composition and decrease epidermal growth factor receptor levels in lipid rafts of human breast cancer cells. J Nutr 137(3):548–553PubMedGoogle Scholar
  9. 9.
    Stillwell W, Shaikh SR, Zerouga M, Siddiqui R, Wassall SR (2005) Docosahexaenoic acid affects cell signaling by altering lipid rafts. Reprod Nutr Dev 45(5):559–579. doi: 10.1051/rnd:2005046 PubMedCrossRefGoogle Scholar
  10. 10.
    Nicholson KM, Anderson NG (2002) The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 14(5):381–395. doi: 10.1016/S0898-6568(01)00271-6 PubMedCrossRefGoogle Scholar
  11. 11.
    Testa JR, Bellacosa A (2001) AKT plays a central role in tumorigenesis. Proc Natl Acad Sci USA 98(20):10983–10985. doi: 10.1073/pnas.211430998 PubMedCrossRefGoogle Scholar
  12. 12.
    Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2(7):489–501. doi: 10.1038/nrc839 PubMedCrossRefGoogle Scholar
  13. 13.
    Marone R, Cmiljanovic V, Giese B, Wymann MP (2008) Targeting phosphoinositide 3-kinase: moving towards therapy. Biochim Biophys Acta 1784(1):159–185PubMedGoogle Scholar
  14. 14.
    Pawson T, Nash P (2000) Protein–protein interactions define specificity in signal transduction. Genes Dev 14(9):1027–1047PubMedGoogle Scholar
  15. 15.
    Alessi DR, Deak M, Casamayor A, Caudwell FB, Morrice N, Norman DG, Gaffney P, Reese CB, MacDougall CN, Harbison D et al (1997) 3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. Curr Biol 7(10):776–789. doi: 10.1016/S0960-9822(06)00336-8 PubMedCrossRefGoogle Scholar
  16. 16.
    Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P (1997) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7(4):261–269. doi: 10.1016/S0960-9822(06)00122-9 PubMedCrossRefGoogle Scholar
  17. 17.
    Hresko RC, Mueckler M (2005) mTOR.RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J Biol Chem 280(49):40406–40416. doi: 10.1074/jbc.M508361200 PubMedCrossRefGoogle Scholar
  18. 18.
    Stephens L, Anderson K, Stokoe D, Erdjument-Bromage H, Painter GF, Holmes AB, Gaffney PR, Reese CB, McCormick F, Tempst P et al (1998) Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B. Science 279(5351):710–714. doi: 10.1126/science.279.5351.710 PubMedCrossRefGoogle Scholar
  19. 19.
    Troyer DA, Chandrasekar B, Barnes JL, Fernandes G (1997) Calorie restriction decreases platelet-derived growth factor (PDGF)-A and thrombin receptor mRNA expression in autoimmune murine lupus nephritis. Clin Exp Immunol 108(1):58–62. doi: 10.1046/j.1365-2249.1997.d01-970.x PubMedCrossRefGoogle Scholar
  20. 20.
    Venkatraman JT, Chandrasekar B, Kim JD, Fernandes G (1994) Effects of n-3 and n-6 fatty acids on the activities and expression of hepatic antioxidant enzymes in autoimmune-prone NZBxNZW F1 mice. Lipids 29(8):561–568. doi: 10.1007/BF02536628 PubMedCrossRefGoogle Scholar
  21. 21.
    Yamanaka K, Rocchi P, Miyake H, Fazli L, Vessella B, Zangemeister-Wittke U, Gleave ME (2005) A novel antisense oligonucleotide inhibiting several antiapoptotic Bcl-2 family members induces apoptosis and enhances chemosensitivity in androgen-independent human prostate cancer PC3 cells. Mol Cancer Ther 4(11):1689–1698. doi: 10.1158/1535-7163.MCT-05-0064 PubMedCrossRefGoogle Scholar
  22. 22.
    Virolle T, Adamson ED, Baron V, Birle D, Mercola D, Mustelin T, de Belle I (2001) The Egr-1 transcription factor directly activates PTEN during irradiation-induced signalling. Nat Cell Biol 3(12):1124–1128. doi: 10.1038/ncb1201-1124 PubMedCrossRefGoogle Scholar
  23. 23.
    Ghosh-Choudhury N, Mandal CC, Choudhury GG (2007) Statin-induced Ras activation integrates the phosphatidylinositol 3-kinase signal to Akt and MAPK for bone morphogenetic protein-2 expression in osteoblast differentiation. J Biol Chem 282(7):4983–4993. doi: 10.1074/jbc.M606706200 PubMedCrossRefGoogle Scholar
  24. 24.
    Ghosh-Choudhury N, Abboud SL, Mahimainathan L, Chandrasekar B, Choudhury GG (2003) Phosphatidylinositol 3-kinase regulates bone morphogenetic protein-2 (BMP-2)-induced myocyte enhancer factor 2A-dependent transcription of BMP-2 gene in cardiomyocyte precursor cells. J Biol Chem 278(24):21998–22005. doi: 10.1074/jbc.M302277200 PubMedCrossRefGoogle Scholar
  25. 25.
    Ghosh-Choudhury N, Abboud SL, Nishimura R, Celeste A, Mahimainathan L, Choudhury GG (2002) Requirement of BMP-2-induced phosphatidylinositol 3-kinase and Akt serine/threonine kinase in osteoblast differentiation and Smad-dependent BMP-2 gene transcription. J Biol Chem 277(36):33361–33368. doi: 10.1074/jbc.M205053200 PubMedCrossRefGoogle Scholar
  26. 26.
    Ghosh-Choudhury N, Choudhury GG, Harris MA, Wozney J, Mundy GR, Abboud SL, Harris SE (2001) Autoregulation of mouse BMP-2 gene transcription is directed by the proximal promoter element. Biochem Biophys Res Commun 286(1):101–108. doi: 10.1006/bbrc.2001.5351 PubMedCrossRefGoogle Scholar
  27. 27.
    Ghosh-Choudhury N, Singha PK, Woodruff K, St Clair P, Bsoul S, Werner SL, Choudhury GG (2006) Concerted action of Smad and CREB-binding protein regulates bone morphogenetic protein-2-stimulated osteoblastic colony-stimulating factor-1 expression. J Biol Chem 281(29):20160–20170. doi: 10.1074/jbc.M511071200 PubMedCrossRefGoogle Scholar
  28. 28.
    Venkatesan B, Mahimainathan L, Das F, Ghosh-Choudhury N, Ghosh Choudhury G (2007) Downregulation of catalase by reactive oxygen species via PI 3 kinase/Akt signaling in mesangial cells. J Cell Physiol 211(2):457–467. doi: 10.1002/jcp.20953 PubMedCrossRefGoogle Scholar
  29. 29.
    Baker SJ (2007) PTEN enters the nuclear age. Cell 128(1):25–28. doi: 10.1016/j.cell.2006.12.023 PubMedCrossRefGoogle Scholar
  30. 30.
    Saal LH, Holm K, Maurer M, Memeo L, Su T, Wang X, Yu JS, Malmstrom PO, Mansukhani M, Enoksson J et al (2005) PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res 65(7):2554–2559. doi: 10.1158/0008-5472-CAN-04-3913 PubMedCrossRefGoogle Scholar
  31. 31.
    Ghosh-Choudhury N, Woodruff K, Qi W, Celeste A, Abboud SL, Ghosh Choudhury G (2000) Bone morphogenetic protein-2 blocks MDA MB 231 human breast cancer cell proliferation by inhibiting cyclin-dependent kinase-mediated retinoblastoma protein phosphorylation. Biochem Biophys Res Commun 272(3):705–711. doi: 10.1006/bbrc.2000.2844 PubMedCrossRefGoogle Scholar
  32. 32.
    Larue L, Bellacosa A (2005) Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene 24(50):7443–7454. doi: 10.1038/sj.onc.1209091 PubMedCrossRefGoogle Scholar
  33. 33.
    Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129(7):1261–1274. doi: 10.1016/j.cell.2007.06.009 PubMedCrossRefGoogle Scholar
  34. 34.
    Testa JR, Tsichlis PN (2005) AKT signaling in normal and malignant cells. Oncogene 24(50):7391–7393. doi: 10.1038/sj.onc.1209100 PubMedCrossRefGoogle Scholar
  35. 35.
    Kane LP, Shapiro VS, Stokoe D, Weiss A (1999) Induction of NF-kappaB by the Akt/PKB kinase. Curr Biol 9(11):601–604. doi: 10.1016/S0960-9822(99)80265-6 PubMedCrossRefGoogle Scholar
  36. 36.
    Madrid LV, Mayo MW, Reuther JY, Baldwin AS Jr (2001) Akt stimulates the transactivation potential of the RelA/p65 Subunit of NF-kappa B through utilization of the Ikappa B kinase and activation of the mitogen-activated protein kinase p38. J Biol Chem 276(22):18934–18940. doi: 10.1074/jbc.M101103200 PubMedCrossRefGoogle Scholar
  37. 37.
    Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB (1999) NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401(6748):82–85. doi: 10.1038/43466 PubMedCrossRefGoogle Scholar
  38. 38.
    Sizemore N, Lerner N, Dombrowski N, Sakurai H, Stark GR (2002) Distinct roles of the Ikappa B kinase alpha and beta subunits in liberating nuclear factor kappa B (NF-kappa B) from Ikappa B and in phosphorylating the p65 subunit of NF-kappa B. J Biol Chem 277(6):3863–3869. doi: 10.1074/jbc.M110572200 PubMedCrossRefGoogle Scholar
  39. 39.
    Konishi T, Sasaki S, Watanabe T, Kitayama J, Nagawa H (2006) Overexpression of hRFI inhibits 5-fluorouracil-induced apoptosis in colorectal cancer cells via activation of NF-kappaB and upregulation of BCL-2 and BCL-XL. Oncogene 25(22):3160–3169. doi: 10.1038/sj.onc.1209342 PubMedCrossRefGoogle Scholar
  40. 40.
    Ahn KS, Sethi G, Krishnan K, Aggarwal BB (2007) Gamma-tocotrienol inhibits nuclear factor-kappaB signaling pathway through inhibition of receptor-interacting protein and TAK1 leading to suppression of antiapoptotic gene products and potentiation of apoptosis. J Biol Chem 282(1):809–820. doi: 10.1074/jbc.M610028200 PubMedCrossRefGoogle Scholar
  41. 41.
    Jeong SJ, Pise-Masison CA, Radonovich MF, Park HU, Brady JN (2005) Activated AKT regulates NF-kappaB activation, p53 inhibition and cell survival in HTLV-1-transformed cells. Oncogene 24(44):6719–6728. doi: 10.1038/sj.onc.1208825 PubMedCrossRefGoogle Scholar
  42. 42.
    Perkins ND (2006) Post-translational modifications regulating the activity and function of the nuclear factor kappa B pathway. Oncogene 25(51):6717–6730. doi: 10.1038/sj.onc.1209937 PubMedCrossRefGoogle Scholar
  43. 43.
    Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116(2):205–219. doi: 10.1016/S0092-8674(04)00046-7 PubMedCrossRefGoogle Scholar
  44. 44.
    Pugazhenthi S, Nesterova A, Sable C, Heidenreich KA, Boxer LM, Heasley LE, Reusch JE (2000) Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response element-binding protein. J Biol Chem 275(15):10761–10766. doi: 10.1074/jbc.275.15.10761 PubMedCrossRefGoogle Scholar
  45. 45.
    Gascoyne DM, Kypta RM, Vivanco MM (2003) Glucocorticoids inhibit apoptosis during fibrosarcoma development by transcriptionally activating Bcl-xL. J Biol Chem 278(20):18022–18029. doi: 10.1074/jbc.M301812200 PubMedCrossRefGoogle Scholar
  46. 46.
    Grillot DA, Gonzalez-Garcia M, Ekhterae D, Duan L, Inohara N, Ohta S, Seldin MF, Nunez G (1997) Genomic organization, promoter region analysis, and chromosome localization of the mouse bcl-x gene. J Immunol 158(10):4750–4757PubMedGoogle Scholar
  47. 47.
    Wang X, Trotman LC, Koppie T, Alimonti A, Chen Z, Gao Z, Wang J, Erdjument-Bromage H, Tempst P, Cordon-Cardo C et al (2007) NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell 128(1):129–139. doi: 10.1016/j.cell.2006.11.039 PubMedCrossRefGoogle Scholar
  48. 48.
    Cully M, You H, Levine AJ, Mak TW (2006) Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 6(3):184–192. doi: 10.1038/nrc1819 PubMedCrossRefGoogle Scholar
  49. 49.
    Kim RH, Peters M, Jang Y, Shi W, Pintilie M, Fletcher GC, DeLuca C, Liepa J, Zhou L, Snow B et al (2005) DJ-1, a novel regulator of the tumor suppressor PTEN. Cancer Cell 7(3):263–273. doi: 10.1016/j.ccr.2005.02.010 PubMedCrossRefGoogle Scholar
  50. 50.
    Saal LH, Gruvberger-Saal SK, Persson C, Lovgren K, Jumppanen M, Staaf J, Jonsson G, Pires MM, Maurer M, Holm K et al (2008) Recurrent gross mutations of the PTEN tumor suppressor gene in breast cancers with deficient DSB repair. Nat Genet 40(1):102–107. doi: 10.1038/ng.2007.39 PubMedCrossRefGoogle Scholar
  51. 51.
    Anti M, Marra G, Armelao F, Bartoli GM, Ficarelli R, Percesepe A, De Vitis I, Maria G, Sofo L, Rapaccini GL et al (1992) Effect of omega-3 fatty acids on rectal mucosal cell proliferation in subjects at risk for colon cancer. Gastroenterology 103(3):883–891PubMedGoogle Scholar
  52. 52.
    Burns CP, Halabi S, Clamon GH, Hars V, Wagner BA, Hohl RJ, Lester E, Kirshner JJ, Vinciguerra V, Paskett E (1999) Phase I clinical study of fish oil fatty acid capsules for patients with cancer cachexia: cancer, leukemia group B study 9473. Clin Cancer Res 5(12):3942–3947PubMedGoogle Scholar
  53. 53.
    Hardman WE, Avula CP, Fernandes G, Cameron IL (2001) Three percent dietary fish oil concentrate increased efficacy of doxorubicin against MDA-MB 231 breast cancer xenografts. Clin Cancer Res 7(7):2041–2049PubMedGoogle Scholar
  54. 54.
    Wymann MP, Marone R (2005) Phosphoinositide 3-kinase in disease: timing, location, and scaffolding. Curr Opin Cell Biol 17(2):141–149. doi: 10.1016/j.ceb.2005.02.011 PubMedCrossRefGoogle Scholar
  55. 55.
    Zhao JJ, Roberts TM (2006) PI3 kinases in cancer: from oncogene artifact to leading cancer target. Sci STKE 2006(365):pe52. doi: 10.1126/stke.3652006pe52 PubMedCrossRefGoogle Scholar
  56. 56.
    Cantley LC, Neel BG (1999) New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA 96(8):4240–4245. doi: 10.1073/pnas.96.8.4240 PubMedCrossRefGoogle Scholar
  57. 57.
    Rameh LE, Cantley LC (1999) The role of phosphoinositide 3-kinase lipid products in cell function. J Biol Chem 274(13):8347–8350. doi: 10.1074/jbc.274.13.8347 PubMedCrossRefGoogle Scholar
  58. 58.
    Chang HW, Aoki M, Fruman D, Auger KR, Bellacosa A, Tsichlis PN, Cantley LC, Roberts TM, Vogt PK (1997) Transformation of chicken cells by the gene encoding the catalytic subunit of PI 3-kinase. Science 276(5320):1848–1850. doi: 10.1126/science.276.5320.1848 PubMedCrossRefGoogle Scholar
  59. 59.
    Bachman KE, Argani P, Samuels Y, Silliman N, Ptak J, Szabo S, Konishi H, Karakas B, Blair BG, Lin C et al (2004) The PIK3CA gene is mutated with high frequency in human breast cancers. Cancer Biol Ther 3(8):772–775PubMedCrossRefGoogle Scholar
  60. 60.
    Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins GJ et al (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science 304(5670):554. doi: 10.1126/science.1096502 PubMedCrossRefGoogle Scholar
  61. 61.
    Samuels Y, Diaz LA Jr, Schmidt-Kittler O, Cummins JM, Delong L, Cheong I, Rago C, Huso DL, Lengauer C, Kinzler KW et al (2005) Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell 7(6):561–573. doi: 10.1016/j.ccr.2005.05.014 PubMedCrossRefGoogle Scholar
  62. 62.
    Isakoff SJ, Engelman JA, Irie HY, Luo J, Brachmann SM, Pearline RV, Cantley LC, Brugge JS (2005) Breast cancer-associated PIK3CA mutations are oncogenic in mammary epithelial cells. Cancer Res 65(23):10992–11000. doi: 10.1158/0008-5472.CAN-05-2612 PubMedCrossRefGoogle Scholar
  63. 63.
    Benistant C, Chapuis H, Roche S (2000) A specific function for phosphatidylinositol 3-kinase alpha (p85alpha–p110alpha) in cell survival and for phosphatidylinositol 3-kinase beta (p85alpha–p110beta) in de novo DNA synthesis of human colon carcinoma cells. Oncogene 19(44):5083–5090. doi: 10.1038/sj.onc.1203871 PubMedCrossRefGoogle Scholar
  64. 64.
    Knobbe CB, Reifenberger G (2003) Genetic alterations and aberrant expression of genes related to the phosphatidyl-inositol-3′-kinase/protein kinase B (Akt) signal transduction pathway in glioblastomas. Brain Pathol 13(4):507–518PubMedGoogle Scholar
  65. 65.
    Kang S, Denley A, Vanhaesebroeck B, Vogt PK (2006) Oncogenic transformation induced by the p110beta, -gamma, and -delta isoforms of class I phosphoinositide 3-kinase. Proc Natl Acad Sci USA 103(5):1289–1294. doi: 10.1073/pnas.0510772103 PubMedCrossRefGoogle Scholar
  66. 66.
    Altomare DA, Testa JR (2005) Perturbations of the AKT signaling pathway in human cancer. Oncogene 24(50):7455–7464. doi: 10.1038/sj.onc.1209085 PubMedCrossRefGoogle Scholar
  67. 67.
    Bellacosa A, de Feo D, Godwin AK, Bell DW, Cheng JQ, Altomare DA, Wan M, Dubeau L, Scambia G, Masciullo V et al (1995) Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int J Cancer 64(4):280–285. doi: 10.1002/ijc.2910640412 PubMedCrossRefGoogle Scholar
  68. 68.
    Cheng JQ, Godwin AK, Bellacosa A, Taguchi T, Franke TF, Hamilton TC, Tsichlis PN, Testa JR (1992) AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc Natl Acad Sci USA 89(19):9267–9271. doi: 10.1073/pnas.89.19.9267 PubMedCrossRefGoogle Scholar
  69. 69.
    Brugge J, Hung MC, Mills GB (2007) A new mutational AKTivation in the PI3K pathway. Cancer Cell 12(2):104–107. doi: 10.1016/j.ccr.2007.07.014 PubMedCrossRefGoogle Scholar
  70. 70.
    Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, Hostetter G, Boguslawski S, Moses TY, Savage S et al (2007) A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448(7152):439–444. doi: 10.1038/nature05933 PubMedCrossRefGoogle Scholar
  71. 71.
    Liang J, Zubovitz J, Petrocelli T, Kotchetkov R, Connor MK, Han K, Lee JH, Ciarallo S, Catzavelos C, Beniston R et al (2002) PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat Med 8(10):1153–1160. doi: 10.1038/nm761 PubMedCrossRefGoogle Scholar
  72. 72.
    Shin I, Yakes FM, Rojo F, Shin NY, Bakin AV, Baselga J, Arteaga CL (2002) PKB/Akt mediates cell-cycle progression by phosphorylation of p27(Kip1) at threonine 157 and modulation of its cellular localization. Nat Med 8(10):1145–1152. doi: 10.1038/nm759 PubMedCrossRefGoogle Scholar
  73. 73.
    Viglietto G, Motti ML, Bruni P, Melillo RM, D’Alessio A, Califano D, Vinci F, Chiappetta G, Tsichlis P, Bellacosa A et al (2002) Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27(Kip1) by PKB/Akt-mediated phosphorylation in breast cancer. Nat Med 8(10):1136–1144. doi: 10.1038/nm762 PubMedCrossRefGoogle Scholar
  74. 74.
    Zhou BP, Liao Y, Xia W, Spohn B, Lee MH, Hung MC (2001) Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat Cell Biol 3(3):245–252. doi: 10.1038/35060032 PubMedCrossRefGoogle Scholar
  75. 75.
    Kwiatkowski DJ, Manning BD (2005) Tuberous sclerosis: a GAP at the crossroads of multiple signaling pathways. Hum Mol Genet 14 Spec No. 2:R251–R258Google Scholar
  76. 76.
    Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, Carr SA, Sabatini DM (2007) PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 25(6):903–915. doi: 10.1016/j.molcel.2007.03.003 PubMedCrossRefGoogle Scholar
  77. 77.
    Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91(2):231–241. doi: 10.1016/S0092-8674(00)80405-5 PubMedCrossRefGoogle Scholar
  78. 78.
    Datta SR, Katsov A, Hu L, Petros A, Fesik SW, Yaffe MB, Greenberg ME (2000) 14–3-3 Proteins and survival kinases cooperate to inactivate BAD by BH3 domain phosphorylation. Mol Cell 6(1):41–51. doi: 10.1016/S1097-2765(00)00006-X PubMedCrossRefGoogle Scholar
  79. 79.
    Zhou BP, Liao Y, Xia W, Zou Y, Spohn B, Hung MC (2001) HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol 3(11):973–982. doi: 10.1038/ncb1101-973 PubMedCrossRefGoogle Scholar
  80. 80.
    Mayo LD, Donner DB (2001) A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci USA 98(20):11598–11603. doi: 10.1073/pnas.181181198 PubMedCrossRefGoogle Scholar
  81. 81.
    Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96(6):857–868. doi: 10.1016/S0092-8674(00)80595-4 PubMedCrossRefGoogle Scholar
  82. 82.
    Dijkers PF, Birkenkamp KU, Lam EW, Thomas NS, Lammers JW, Koenderman L, Coffer PJ (2002) FKHR-L1 can act as a critical effector of cell death induced by cytokine withdrawal: protein kinase B-enhanced cell survival through maintenance of mitochondrial integrity. J Cell Biol 156(3):531–542. doi: 10.1083/jcb.200108084 PubMedCrossRefGoogle Scholar
  83. 83.
    Majumder PK, Sellers WR (2005) Akt-regulated pathways in prostate cancer. Oncogene 24(50):7465–7474. doi: 10.1038/sj.onc.1209096 PubMedCrossRefGoogle Scholar
  84. 84.
    Tran H, Brunet A, Griffith EC, Greenberg ME (2003) The many forks in FOXO’s road. Sci STKE 2003(172):RE5. doi: 10.1126/stke.2003.172.re5m PubMedCrossRefGoogle Scholar
  85. 85.
    Chapman NR, Europe-Finner GN, Robson SC (2004) Expression and deoxyribonucleic acid-binding activity of the nuclear factor kappaB family in the human myometrium during pregnancy and labor. J Clin Endocrinol Metab 89(11):5683–5693. doi: 10.1210/jc.2004-0873 PubMedCrossRefGoogle Scholar
  86. 86.
    Mattioli I, Sebald A, Bucher C, Charles RP, Nakano H, Doi T, Kracht M, Schmitz ML (2004) Transient and selective NF-kappa B p65 serine 536 phosphorylation induced by T cell costimulation is mediated by I kappa B kinase beta and controls the kinetics of p65 nuclear import. J Immunol 172(10):6336–6344PubMedGoogle Scholar
  87. 87.
    Vermeulen L, De Wilde G, Notebaert S, Vanden Berghe W, Haegeman G (2002) Regulation of the transcriptional activity of the nuclear factor-kappaB p65 subunit. Biochem Pharmacol 64(5–6):963–970. doi: 10.1016/S0006-2952(02)01161-9 PubMedCrossRefGoogle Scholar
  88. 88.
    Angileri FF, Aguennouz M, Conti A, La Torre D, Cardali S, Crupi R, Tomasello C, Germano A, Vita G, Tomasello F (2008) Nuclear factor-kappaB activation and differential expression of survivin and Bcl-2 in human grade 2–4 astrocytomas. Cancer 112(10):2258–2266PubMedCrossRefGoogle Scholar
  89. 89.
    Upadhyay AK, Singh S, Chhipa RR, Vijayakumar MV, Ajay AK, Bhat MK (2006) Methyl-beta-cyclodextrin enhances the susceptibility of human breast cancer cells to carboplatin and 5-fluorouracil: involvement of Akt, NF-kappaB and Bcl-2. Toxicol Appl Pharmacol 216(2):177–185. doi: 10.1016/j.taap.2006.05.009 PubMedCrossRefGoogle Scholar
  90. 90.
    Takase O, Minto AW, Puri TS, Cunningham PN, Jacob A, Hayashi M, Quigg RJ (2008) Inhibition of NF-kappaB-dependent Bcl-xL expression by clusterin promotes albumin-induced tubular cell apoptosis. Kidney Int 73(5):567–577. doi: 10.1038/sj.ki.5002563 PubMedCrossRefGoogle Scholar
  91. 91.
    Gilmore TD (2006) Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25(51):6680–6684. doi: 10.1038/sj.onc.1209954 PubMedCrossRefGoogle Scholar
  92. 92.
    Hayden MS, West AP, Ghosh S (2006) NF-kappaB and the immune response. Oncogene 25(51):6758–6780. doi: 10.1038/sj.onc.1209943 PubMedCrossRefGoogle Scholar
  93. 93.
    Yeh YY, Chiao CC, Kuo WY, Hsiao YC, Chen YJ, Wei YY, Lai TH, Fong YC, Tang CH (2008) TGF-beta1 increases motility and alphavbeta3 integrin up-regulation via PI3K, Akt and NF-kappaB-dependent pathway in human chondrosarcoma cells. Biochem Pharmacol 75(6):1292–1301. doi: 10.1016/j.bcp.2007.11.017 PubMedCrossRefGoogle Scholar
  94. 94.
    Haller D, Russo MP, Sartor RB, Jobin C (2002) IKK beta and phosphatidylinositol 3-kinase/Akt participate in non-pathogenic Gram-negative enteric bacteria-induced RelA phosphorylation and NF-kappa B activation in both primary and intestinal epithelial cell lines. J Biol Chem 277(41):38168–38178. doi: 10.1074/jbc.M205737200 PubMedCrossRefGoogle Scholar
  95. 95.
    Strassheim D, Asehnoune K, Park JS, Kim JY, He Q, Richter D, Kuhn K, Mitra S, Abraham E (2004) Phosphoinositide 3-kinase and Akt occupy central roles in inflammatory responses of Toll-like receptor 2-stimulated neutrophils. J Immunol 172(9):5727–5733PubMedGoogle Scholar
  96. 96.
    Spierings D, McStay G, Saleh M, Bender C, Chipuk J, Maurer U, Green DR (2005) Connected to death: the (unexpurgated) mitochondrial pathway of apoptosis. Science 310(5745):66–67. doi: 10.1126/science.1117105 PubMedCrossRefGoogle Scholar
  97. 97.
    Watson MR, Wallace K, Gieling RG, Manas DM, Jaffray E, Hay RT, Mann DA, Oakley F (2008) NF-kappaB is a critical regulator of the survival of rodent and human hepatic myofibroblasts. J Hepatol 48(4):589–597. doi: 10.1016/j.jhep.2007.12.019 PubMedCrossRefGoogle Scholar
  98. 98.
    Toruner M, Fernandez-Zapico M, Sha JJ, Pham L, Urrutia R, Egan LJ (2006) Antianoikis effect of nuclear factor-kappaB through up-regulated expression of osteoprotegerin, BCL-2, and IAP-1. J Biol Chem 281(13):8686–8696. doi: 10.1074/jbc.M512178200 PubMedCrossRefGoogle Scholar
  99. 99.
    Tsukahara T, Kannagi M, Ohashi T, Kato H, Arai M, Nunez G, Iwanaga Y, Yamamoto N, Ohtani K, Nakamura M et al (1999) Induction of Bcl-x(L) expression by human T-cell leukemia virus type 1 Tax through NF-kappaB in apoptosis-resistant T-cell transfectants with Tax. J Virol 73(10):7981–7987PubMedGoogle Scholar
  100. 100.
    Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R et al (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275(5308):1943–1947. doi: 10.1126/science.275.5308.1943 PubMedCrossRefGoogle Scholar
  101. 101.
    Stiles B, Groszer M, Wang S, Jiao J, Wu H (2004) PTENless means more. Dev Biol 273(2):175–184. doi: 10.1016/j.ydbio.2004.06.008 PubMedCrossRefGoogle Scholar
  102. 102.
    Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273(22):13375–13378. doi: 10.1074/jbc.273.22.13375 PubMedCrossRefGoogle Scholar
  103. 103.
    Maehama T, Dixon JE (1999) PTEN: a tumour suppressor that functions as a phospholipid phosphatase. Trends Cell Biol 9(4):125–128. doi: 10.1016/S0962-8924(99)01519-6 PubMedCrossRefGoogle Scholar
  104. 104.
    Yilmaz OH, Valdez R, Theisen BK, Guo W, Ferguson DO, Wu H, Morrison SJ (2006) PTEN dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441(7092):475–482. doi: 10.1038/nature04703 PubMedCrossRefGoogle Scholar
  105. 105.
    He XC, Yin T, Grindley JC, Tian Q, Sato T, Tao WA, Dirisina R, Porter-Westpfahl KS, Hembree M, Johnson T et al (2007) PTEN-deficient intestinal stem cells initiate intestinal polyposis. Nat Genet 39(2):189–198. doi: 10.1038/ng1928 PubMedCrossRefGoogle Scholar
  106. 106.
    Stambolic V, Tsao MS, Macpherson D, Suzuki A, Chapman WB, Mak TW (2000) High incidence of breast and endometrial neoplasia resembling human Cowden syndrome in pten +/− mice. Cancer Res 60(13):3605–3611PubMedGoogle Scholar
  107. 107.
    Li G, Robinson GW, Lesche R, Martinez-Diaz H, Jiang Z, Rozengurt N, Wagner KU, Wu DC, Lane TF, Liu X et al (2002) Conditional loss of PTEN leads to precocious development and neoplasia in the mammary gland. Development 129(17):4159–4170PubMedGoogle Scholar
  108. 108.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988. doi: 10.1073/pnas.0530291100 PubMedCrossRefGoogle Scholar
  109. 109.
    Zhou J, Wulfkuhle J, Zhang H, Gu P, Yang Y, Deng J, Margolick JB, Liotta LA, Petricoin EIII, Zhang Y (2007) Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc Natl Acad Sci USA 104(41):16158–16163. doi: 10.1073/pnas.0702596104 PubMedCrossRefGoogle Scholar
  110. 110.
    Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M, Caparros E, Buteau J, Brown K, Perkins SL et al (2007) Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med 13(10):1203–1210. doi: 10.1038/nm1636 PubMedCrossRefGoogle Scholar
  111. 111.
    Stambolic V, MacPherson D, Sas D, Lin Y, Snow B, Jang Y, Benchimol S, Mak TW (2001) Regulation of PTEN transcription by p53. Mol Cell 8(2):317–325. doi: 10.1016/S1097-2765(01)00323-9 PubMedCrossRefGoogle Scholar
  112. 112.
    Patel L, Pass I, Coxon P, Downes CP, Smith SA, Macphee CH (2001) Tumor suppressor and anti-inflammatory actions of PPARgamma agonists are mediated via upregulation of PTEN. Curr Biol 11(10):764–768. doi: 10.1016/S0960-9822(01)00225-1 PubMedCrossRefGoogle Scholar
  113. 113.
    Vasudevan KM, Gurumurthy S, Rangnekar VM (2004) Suppression of PTEN expression by NF-kappa B prevents apoptosis. Mol Cell Biol 24(3):1007–1021. doi: 10.1128/MCB.24.3.1007-1021.2004 PubMedCrossRefGoogle Scholar
  114. 114.
    Wang Q, Zhou Y, Wang X, Chung DH, Evers BM (2007) Regulation of PTEN expression in intestinal epithelial cells by c-Jun NH2-terminal kinase activation and nuclear factor-kappaB inhibition. Cancer Res 67(16):7773–7781. doi: 10.1158/0008-5472.CAN-07-0187 PubMedCrossRefGoogle Scholar
  115. 115.
    Xia D, Srinivas H, Ahn YH, Sethi G, Sheng X, Yung WK, Xia Q, Chiao PJ, Kim H, Brown PH et al (2007) Mitogen-activated protein kinase kinase-4 promotes cell survival by decreasing PTEN expression through an NF kappa B-dependent pathway. J Biol Chem 282(6):3507–3519. doi: 10.1074/jbc.M610141200 PubMedCrossRefGoogle Scholar
  116. 116.
    Nakamura N, Ramaswamy S, Vazquez F, Signoretti S, Loda M, Sellers WR (2000) Forkhead transcription factors are critical effectors of cell death and cell cycle arrest downstream of PTEN. Mol Cell Biol 20(23):8969–8982. doi: 10.1128/MCB.20.23.8969-8982.2000 PubMedCrossRefGoogle Scholar
  117. 117.
    Ramaswamy S, Nakamura N, Vazquez F, Batt DB, Perera S, Roberts TM, Sellers WR (1999) Regulation of G1 progression by the PTEN tumor suppressor protein is linked to inhibition of the phosphatidylinositol 3-kinase/Akt pathway. Proc Natl Acad Sci USA 96(5):2110–2115. doi: 10.1073/pnas.96.5.2110 PubMedCrossRefGoogle Scholar
  118. 118.
    Wu M, Min C, Wang X, Yu Z, Kirsch KH, Trackman PC, Sonenshein GE (2007) Repression of BCL2 by the tumor suppressor activity of the lysyl oxidase propeptide inhibits transformed phenotype of lung and pancreatic cancer cells. Cancer Res 67(13):6278–6285. doi: 10.1158/0008-5472.CAN-07-0776 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Triparna Ghosh-Choudhury
    • 1
    • 2
  • Chandi C. Mandal
    • 1
  • Kathleen Woodruff
    • 1
  • Patricia St Clair
    • 1
  • Gabriel Fernandes
    • 2
  • Goutam G. Choudhury
    • 2
    • 3
    • 4
  • Nandini Ghosh-Choudhury
    • 1
    • 4
    Email author
  1. 1.Department of PathologyUniversity of Texas Health Science Center at San AntonioSan AntonioUSA
  2. 2.Department of MedicineUniversity of Texas Health Science Center at San AntonioSan AntonioUSA
  3. 3.Geriatric Research, Education and Clinical CenterSan AntonioUSA
  4. 4.South Texas Veterans Health Care SystemSan AntonioUSA

Personalised recommendations