Analysis of the effect of age on the prognosis of breast cancer

  • C. Cluze
  • M. Colonna
  • L. Remontet
  • F. Poncet
  • E. Sellier
  • A. Seigneurin
  • P. Delafosse
  • N. Bossard
Epidemiology

Abstract

To explore the effect of age at diagnosis on relative survival from breast cancer at different cancer stages and grades, using appropriate statistical modeling of time-varying and non-linear effects of that prognostic covariate. Data on 4,791 female invasive breast cancers diagnosed between 1990 and 1997 were obtained from a French cancer registry. The effect of age on relative survival was studied using an approach based on excess rate modeling. Different models testing non-linear and non-proportional effects of age were explored for each grade and each stage. In the whole population, the effect of age was not linear and varied with the time elapsed since diagnosis. When analyzing the different sub-groups according to grade and stage, age did not have a significant effect on relative survival in grade 1 or stage 3 tumors. In grade 2 and stage 4 tumors, the excess mortality rate increased with age, in a linear way. In grade 3 tumors, age was a time-dependent factor: older women had higher excess rates than younger ones during the first year after diagnosis whereas the inverse phenomenon was observed 5 years after diagnosis. Our findings suggest that when taking into account grade and stage, the time-varying impact of young age at diagnosis is limited to grade 3 tumors, without evidence of worst prognosis at 5 years for the youngest women.

Keywords

Breast neoplasm Registry Survival analysis Proportional hazard models Age Relative survival 

References

  1. 1.
    Grosclaude P, Colonna M, Hedelin G et al (2001) Survival of women with breast cancer in France: variation with age, stage and treatment. Breast Cancer Res Treat 70(2):137–143. doi:10.1023/A:1012974728007 PubMedCrossRefGoogle Scholar
  2. 2.
    Kroman N, Jensen MB, Wohlfahrt J et al (2000) Factors influencing the effect of age on prognosis in breast cancer: population based study. BMJ 320(7233):474–478. doi:10.1136/bmj.320.7233.474 PubMedCrossRefGoogle Scholar
  3. 3.
    Levi F, Randimbison L, La Vecchia C (1992) Breast cancer survival in relation to sex and age. Oncology 49(6):413–417PubMedCrossRefGoogle Scholar
  4. 4.
    Ugnat AM, Xie L, Morriss J et al (2004) Survival of women with breast cancer in Ottawa, Canada: variation with age, stage, histology, grade and treatment. Br J Cancer 90(6):1138–1143. doi:10.1038/sj.bjc.6601662 PubMedCrossRefGoogle Scholar
  5. 5.
    Winchester DP, Osteen RT, Menck HR (1996) The National Cancer Data Base report on breast carcinoma characteristics and outcome in relation to age. Cancer 78(8):1838–1843. doi:10.1002/(SICI)1097-0142(19961015)78:8<1838::AID-CNCR27>3.0.CO;2-YPubMedCrossRefGoogle Scholar
  6. 6.
    Goldhirsch A, Wood WC, Gelber RD et al (2007) Progress and promise: highlights of the international expert consensus on the primary therapy of early breast cancer 2007. Ann Oncol 18(7):1133–1144. doi:10.1093/annonc/mdm271 PubMedCrossRefGoogle Scholar
  7. 7.
    Goldhirsch A, Glick JH, Gelber RD et al (2001) Meeting highlights: International Consensus Panel on the Treatment of Primary Breast Cancer. Seventh International Conference on Adjuvant Therapy of Primary Breast Cancer. J Clin Oncol 19(18):3817–3827PubMedGoogle Scholar
  8. 8.
    Figueiredo JC, Ennis M, Knight JA et al (2007) Influence of young age at diagnosis and family history of breast or ovarian cancer on breast cancer outcomes in a population-based cohort study. Breast Cancer Res Treat 105(1):69–80. doi:10.1007/s10549-006-9433-3 PubMedCrossRefGoogle Scholar
  9. 9.
    Maggard MA, O’Connell JB, Lane KE et al (2003) Do young breast cancer patients have worse outcomes? J Surg Res 113(1):109–113. doi:10.1016/S0022-4804(03)00179-3 PubMedCrossRefGoogle Scholar
  10. 10.
    Mallol N, Desandes E, Lesur-Schwander A et al (2006) Disease-specific and event-free survival in breast cancer patients: a hospital-based study between 1990 and 2001. Rev Epidemiol Sante Publique 54(4):313–325. doi:10.1016/S0398-7620(06)76727-X PubMedCrossRefGoogle Scholar
  11. 11.
    Rapiti E, Fioretta G, Verkooijen HM et al (2005) Survival of young and older breast cancer patients in Geneva from 1990 to 2001. Eur J Cancer 41(10):1446–1452. doi:10.1016/j.ejca.2005.02.029 PubMedCrossRefGoogle Scholar
  12. 12.
    Holli K, Isola J (1997) Effect of age on the survival of breast cancer patients. Eur J Cancer 33(3):425–428. doi:10.1016/S0959-8049(97)89017-X PubMedCrossRefGoogle Scholar
  13. 13.
    Shannon C, Smith IE (2003) Breast cancer in adolescents and young women. Eur J Cancer 39(18):2632–2642. doi:10.1016/S0959-8049(03)00669-5 PubMedCrossRefGoogle Scholar
  14. 14.
    Allemani C, Sant M, Berrino F et al (2004) Prognostic value of morphology and hormone receptor status in breast cancer—a population-based study. Br J Cancer 91(7):1263–1268. doi:10.1038/sj.bjc.6602153 PubMedCrossRefGoogle Scholar
  15. 15.
    Dabakuyo TS, Bonnetain F, Roignot P et al (2008) Population-based study of breast cancer survival in Cote d’or (France): prognostic factors and relative survival. Ann Oncol 19(2):276–283. doi:10.1093/annonc/mdm491 PubMedCrossRefGoogle Scholar
  16. 16.
    Bossard N, Velten M, Remontet L et al (2007) Survival of cancer patients in France: a population-based study from The Association of the French Cancer Registries (FRANCIM). Eur J Cancer 43(1):149–160. doi:10.1016/j.ejca.2006.07.021 PubMedCrossRefGoogle Scholar
  17. 17.
    Rosenberg J, Chia YL, Plevritis S (2005) The effect of age, race, tumor size, tumor grade, and disease stage on invasive ductal breast cancer survival in the U.S. SEER database. Breast Cancer Res Treat 89(1):47–54. doi:10.1007/s10549-004-1470-1 PubMedCrossRefGoogle Scholar
  18. 18.
    Tai P, Cserni G, Van De SJ et al (2005) Modeling the effect of age in T1–2 breast cancer using the SEER database. BMC Cancer 5:130. doi:10.1186/1471-2407-5-130 PubMedCrossRefGoogle Scholar
  19. 19.
    Remontet L, Bossard N, Belot A et al (2007) An overall strategy based on regression models to estimate relative survival and model the effects of prognostic factors in cancer survival studies. Stat Med 26(10):2214–2228. doi:10.1002/sim.2656 PubMedCrossRefGoogle Scholar
  20. 20.
    Abrahamowicz M, MacKenzie TA (2007) Joint estimation of time-dependent and non-linear effects of continuous covariates on survival. Stat Med 26(2):392–408. doi:10.1002/sim.2519 PubMedCrossRefGoogle Scholar
  21. 21.
    Sant M, Gatta G, Micheli A et al (1991) Survival and age at diagnosis of breast cancer in a population-based cancer registry. Eur J Cancer 27(8):981–984PubMedCrossRefGoogle Scholar
  22. 22.
    Sant M, Capocaccia R, Verdecchia A et al (1998) Survival of women with breast cancer in Europe: variation with age, year of diagnosis and country. The EUROCARE Working Group. Int J Cancer 77(5):679–683. doi:10.1002/(SICI)1097-0215(19980831)77:5<679::AID-IJC3>3.0.CO;2-SPubMedCrossRefGoogle Scholar
  23. 23.
    Armes JE, Venter DJ (2002) The pathology of inherited breast cancer. Pathology 34(4):309–314. doi:10.1080/00313020220147113 PubMedCrossRefGoogle Scholar
  24. 24.
    Kirova YM, Stoppa-Lyonnet D, Savignoni A et al (2005) Risk of breast cancer recurrence and contralateral breast cancer in relation to BRCA1 and BRCA2 mutation status following breast-conserving surgery and radiotherapy. Eur J Cancer 41(15):2304–2311. doi:10.1016/j.ejca.2005.02.037 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • C. Cluze
    • 1
  • M. Colonna
    • 1
  • L. Remontet
    • 2
    • 3
    • 4
  • F. Poncet
    • 1
  • E. Sellier
    • 1
  • A. Seigneurin
    • 1
  • P. Delafosse
    • 1
  • N. Bossard
    • 2
    • 3
    • 4
  1. 1.Cancer Registry of IsèreMeylanFrance
  2. 2.Hospices Civils de LyonService de BiostatistiqueLyonFrance
  3. 3.Université de LyonVilleurbanneFrance
  4. 4.CNRS, UMR 5558Laboratoire Biostatistique SantéPierre-BéniteFrance

Personalised recommendations