Advertisement

Breast Cancer Research and Treatment

, Volume 116, Issue 3, pp 571–575 | Cite as

CCND1 G870A polymorphism contributes to breast cancer susceptibility: a meta-analysis

  • Cheng Lu
  • Jing Dong
  • Hongxia Ma
  • Guangfu Jin
  • Zhibin Hu
  • Yuzhu Peng
  • Xirong Guo
  • Xinru Wang
  • Hongbing ShenEmail author
Epidemiology

Abstract

Cyclin D1 (CCND1), a key cell cycle regulatory protein that governs the cell cycle progression from G1 to S phase, can promote cell proliferation or induce growth arrest and apoptosis. Since the identification of a well-characterized functional polymorphism, G870A in exon 4 of CCND1, several molecular epidemiological studies were conducted in recent years to evaluate the association between G870A and breast cancer risk in diverse populations. However, the results remain conflicting rather than conclusive. This meta-analysis on 5,371 cases with breast cancer and 5,336 controls from 7 published case-control studies showed that the variant allele 870A was associated with a significantly increased risk of breast cancer (AA vs. GG: OR = 1.18, 95% CI = 1.06–1.32; AG vs. GG: OR = 1.12, 95% CI = 1.01–1.23; AA/AG vs. GG: OR = 1.14, 95% CI = 1.04–1.25) without any between-study heterogeneity. In the stratified analysis by race, we found that the increased breast cancer risk associated with G870A polymorphism was more evident in Caucasians (OR = 1.14, 95% CI = 1.01–1.28, P = 0.88 for heterogeneity test), but not significant in Asians (OR = 1.10, 95% CI = 0.85–1.42, P = 0.05 for heterogeneity test). The results suggest that CCND1 G870A polymorphism may contribute to breast cancer development, especially in Caucasians. Additional well-designed large studies were required for the validation of this association in different populations.

Keywords

CCND1 Polymorphism Breast Cancer Meta-analysis 

Notes

Acknowledgements

This work was supported in part by Program for Chang jiang Scholars and Innovative Research Team in University and the Innovative Key Grant of Ministry of Education of China (#705023).

References

  1. 1.
    Ormandy CJ, Musgrove EA, Hui R, Daly RJ, Sutherland RL (2003) Cyclin D1, EMS1 and 11q13 amplification in breast cancer. Breast Cancer Res Treat 78(3):323–335. doi: 10.1023/A:1023033708204 PubMedCrossRefGoogle Scholar
  2. 2.
    Malumbres M, Barbacid M (2001) To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer 1(3):222–231. doi: 10.1038/35106065 PubMedCrossRefGoogle Scholar
  3. 3.
    Cook SJ, Balmanno K, Garner A, Millar T, Taverner C, Todd D (2000) Regulation of cell cycle re-entry by growth, survival and stress signalling pathways. Biochem Soc Trans 28(2):233–240PubMedGoogle Scholar
  4. 4.
    Sherr CJ (1996) Cancer cell cycles. Science 274(5293):1672–1677. doi: 10.1126/science.274.5293.1672 PubMedCrossRefGoogle Scholar
  5. 5.
    Zhou P, Jiang W, Weghorst CM, Weinstein IB (1996) Overexpression of cyclin D1 enhances gene amplification. Cancer Res 56(1):36–39PubMedGoogle Scholar
  6. 6.
    Yang L, Parkin DM, Ferlay J, Li L, Chen Y (2005) Estimates of cancer incidence in China for 2000 and projections for 2005. Cancer Epidemiol Biomarkers Prev 14(1):243–250PubMedGoogle Scholar
  7. 7.
    Barnes DM, Gillett CE (1998) Cyclin D1 in breast cancer. Breast Cancer Res Treat 52(1–3):1–15. doi: 10.1023/A:1006103831990 PubMedCrossRefGoogle Scholar
  8. 8.
    Steeg PS, Zhou Q (1998) Cyclins and breast cancer. Breast Cancer Res Treat 52(1–3):17–28. doi: 10.1023/A:1006102916060 PubMedCrossRefGoogle Scholar
  9. 9.
    Hosokawa Y, Arnold A (1998) Mechanism of cyclin D1 (CCND1, PRAD1) overexpression in human cancer cells: analysis of allele-specific expression. Genes Chromosomes Cancer 22(1):66–71. doi :10.1002/(SICI)1098-2264(199805)22:1<66::AID-GCC9<3.0.CO;2-5PubMedCrossRefGoogle Scholar
  10. 10.
    Knudsen KE, Diehl JA, Haiman CA, Knudsen ES (2006) Cyclin D1: polymorphism, aberrant splicing and cancer risk. Oncogene 25(11):1620–1628. doi: 10.1038/sj.onc.1209371 PubMedCrossRefGoogle Scholar
  11. 11.
    Kandel R, Zhu XL, Li SQ, Rohan T (2001) Cyclin D1 protein overexpression and gene amplification in benign breast tissue and breast cancer risk. Eur J Cancer Prev 10(1):43–51. doi: 10.1097/00008469-200102000-00005 PubMedCrossRefGoogle Scholar
  12. 12.
    Sutherland RL, Musgrove EA (2002) Cyclin D1 and mammary carcinoma: new insights from transgenic mouse models. Breast Cancer Res 4(1):14–17. doi: 10.1186/bcr411 PubMedCrossRefGoogle Scholar
  13. 13.
    Betticher DC, Thatcher N, Altermatt HJ, Hoban P, Ryder WD, Heighway J (1995) Alternate splicing produces a novel cyclin D1 transcript. Oncogene 11(5):1005–1011PubMedGoogle Scholar
  14. 14.
    Solomon DA, Wang Y, Fox SR, Lambeck TC, Giesting S, Lan Z et al (2003) Cyclin D1 splice variants. Differential effects on localization, RB phosphorylation, and cellular transformation. J Biol Chem 278(32):30339–30347. Erratum in: J Biol Chem 2004 Jul 16; 279. 29:30914. doi: 10.1074/jbc.M303969200 Google Scholar
  15. 15.
    Sawa H, Ohshima TA, Ukita H, Murakami H, Chiba Y, Kamada H et al (1998) Alternatively spliced forms of cyclin D1 modulate entry into the cell cycle in an inverse manner. Oncogene 16(13):1701–1712. doi: 10.1038/sj.onc.1201691 PubMedCrossRefGoogle Scholar
  16. 16.
    Grieu F, Malaney S, Ward R, Joseph D, Iacopetta B (2003) Lack of association between CCND1 G870A polymorphism and the risk of breast and colorectal cancers. Anticancer Res 23(5b):4257–4259PubMedGoogle Scholar
  17. 17.
    Shu XO, Moore DB, Cai Q, Cheng J, Wen W, Pierce L et al (2005) Association of cyclin D1 genotype with breast cancer risk and survival. Cancer Epidemiol Biomarkers Prev 14(1):91–97PubMedGoogle Scholar
  18. 18.
    Ceschi M, Sun CL, Van Den Berg D, Koh WP, Yu MC, Probst-Hensch N (2005) The effect of cyclin D1 (CCND1) G870A-polymorphism on breast cancer risk is modified by oxidative stress among Chinese women in Singapore. Carcinogenesis 26(8):1457–1464. doi: 10.1093/carcin/bgi093 PubMedCrossRefGoogle Scholar
  19. 19.
    Yu CP, Yu JC, Sun CA, Tzao C, Ho JY, Yen AM (2008) Tumor susceptibility and prognosis of breast cancer associated with the G870A polymorphism of CCND1. Breast Cancer Res Treat 107(1):95–102. doi: 10.1007/s10549-007-9522-y PubMedCrossRefGoogle Scholar
  20. 20.
    Försti A, Angelini S, Festa F, Sanyal S, Zhang Z, Grzybowska E et al (2004) Single nucleotide polymorphisms in breast cancer. Oncol Rep 11(4):917–922PubMedGoogle Scholar
  21. 21.
    Krippl P, Langsenlehner U, Renner W, Yazdani-Biuki B, Wolf G, Wascher TC et al (2003) The 870G>A polymorphism of the cyclin D1 gene is not associated with breast cancer. Breast Cancer Res Treat 82(3):165–168. doi: 10.1023/B:BREA.0000004372.20461.33 PubMedCrossRefGoogle Scholar
  22. 22.
    Onay UV, Aaltonen K, Briollais L, Knight JA, Pabalan N, Kilpivaara O et al (2008) Combined effect of CCND1 and COMT polymorphisms and increased breast cancer risk. BMC Cancer 8:6. doi: 10.1186/1471-2407-8-6 PubMedCrossRefGoogle Scholar
  23. 23.
    Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634PubMedGoogle Scholar
  24. 24.
    Radu A, Neubauer V, Akagi T, Hanafusa H, Georgescu MM (2003) PTEN induces cell cycle arrest by decreasing the level and nuclear localization of cyclin D1. Mol Cell Biol 23(17):6139–6149. doi: 10.1128/MCB.23.17.6139-6149.2003 PubMedCrossRefGoogle Scholar
  25. 25.
    Alle KM, Henshall SM, Field AS, Sutherland RL (1998) Cyclin D1 protein is overexpressed in hyperplasia and intraductal carcinoma of the breast. Clin Cancer Res 4(4):847–854PubMedGoogle Scholar
  26. 26.
    Lu F, Gladden AB, Diehl JA (2003) An alternatively spliced cyclin D1 isoform, cyclin D1b, is a nuclear oncogene. Cancer Res 63(21):7056–7061PubMedGoogle Scholar
  27. 27.
    Wang L, Habuchi T, Takahashi T, Mitsumori K, Kamoto T, Kakehi Y et al (2002) Cyclin D1 gene polymorphism is associated with an increased risk of urinary bladder cancer. Carcinogenesis 23(2):257–264. doi: 10.1093/carcin/23.2.257 PubMedCrossRefGoogle Scholar
  28. 28.
    Zhang J, Li Y, Wang R, Wen D, Sarbia M, Kuang G et al (2003) Association of cyclin D1 (G870A) polymorphism with susceptibility to esophageal and gastric cardiac carcinoma in a northern Chinese population. Int J Cancer 105(2):281–284. doi: 10.1002/ijc.11067 PubMedCrossRefGoogle Scholar
  29. 29.
    Wang L, Habuchi T, Mitsumori K, Li Z, Kamoto T, Kinoshita H et al (2003) Increased risk of prostate cancer associated with AA genotype of cyclin D1 gene A870G polymorphism. Int J Cancer 103(1):116–120. doi: 10.1002/ijc.10793 PubMedCrossRefGoogle Scholar
  30. 30.
    Zheng Y, Shen H, Sturgis EM, Wang LE, Eicher SA, Strom SS et al (2001) Cyclin D1 polymorphism and risk for squamous cell carcinoma of the head and neck: a case-control study. Carcinogenesis 22(8):1195–1199. doi: 10.1093/carcin/22.8.1195 PubMedCrossRefGoogle Scholar
  31. 31.
    Tan XL, Nieters A, Kropp S, Hoffmeister M, Brenner H, Chang-Claude J (2008) The association of cyclin D1 G870A and E-cadherin C-160A polymorphisms with the risk of colorectal cancer in a case control study and meta-analysis. Int J Cancer 122(11):2573–2580. doi: 10.1002/ijc.23363 PubMedCrossRefGoogle Scholar
  32. 32.
    Lewis RC, Bostick RM, Xie D, Deng Z, Wargovich MJ, Fina MF et al (2003) Polymorphism of the cyclin D1 gene, CCND1, and risk for incident sporadic colorectal adenomas. Cancer Res 63(23):8549–8553PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Cheng Lu
    • 1
    • 2
  • Jing Dong
    • 3
  • Hongxia Ma
    • 3
  • Guangfu Jin
    • 3
  • Zhibin Hu
    • 2
    • 3
  • Yuzhu Peng
    • 1
  • Xirong Guo
    • 1
  • Xinru Wang
    • 2
  • Hongbing Shen
    • 2
    • 3
    Email author
  1. 1.Nanjing Maternity and Child Health Hospital of Nanjing Medical UniversityNanjingChina
  2. 2.Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
  3. 3.Department of Epidemiology and BiostatisticsCancer Center of Nanjing Medical UniversityNanjingChina

Personalised recommendations