Breast Cancer Research and Treatment

, Volume 116, Issue 3, pp 543–549 | Cite as

Exploratory study evaluating the association of polymorphisms of angiogenesis genes with hot flashes

  • Bryan P. Schneider
  • Milan Radovich
  • David A. Flockhart
  • Janet S. Carpenter
  • Lang Li
  • Jason D. Robarge
  • Anna M. Storniolo
  • Bradley A. Hancock
  • Todd C. Skaar
  • George W. Sledge
Epidemiology

Abstract

Purpose Hot flashes are a common symptom and an important cause of decreased quality of life in women with breast cancer. Hot flashes involve vasodilatation and flushing, however, their complex etiology is not fully understood. We evaluated the association between germline polymorphisms in genes important to angiogenesis and subjective reporting of hot flashes. Experimental design We recruited 1,244 subjects; 520 were breast cancer cases, 715 were documented healthy controls, and nine were of unknown status. Subjects were asked to provide a blood specimen and complete a questionnaire which included whether they had recently or had ever experienced hot flashes. We evaluated candidate polymorphisms in the following genes: hypoxia inducible factor-1 alpha (HIF1α), vascular endothelial growth factor (VEGF), VEGF-receptor 2 (VEGFR-2), endothelial nitric oxide synthase (eNOS), neuropilin-1 (NRP-1), and NRP-2. Testing for an association between polymorphisms and a history of current flashes or ever having hot flashes was performed. Results 441 premenopausal and 533 postmenopausal, Caucasian women were evaluable for hot flash analysis. For premenopausal women the eNOS-786 CT and TT genotypes were significantly associated with a greater likelihood of a subject reporting current hot flashes than the CC genotype (P = 0.03). After adjusting for clinical variables, the genotype association was no longer significant (P = 0.08). For postmenopausal women, the HIF1α 1744 CT and TT genotypes were significantly associated with a greater likelihood of a subject reporting current hot flashes (P = 0.05) and this remained significant after consideration of established clinical variables (P = 0.04). Conclusion Hot flashes may be regulated by genes that control angiogenesis.

Keywords

Hot flash Breast cancer Single nucleotide polymorphism Hypoxia inducible factor 1-alpha Endothelial nitric oxide synthase Angiogenesis 

Notes

Acknowledgements

Supported by: ASCO Career Development Award (BPS), Catherine Peachey Fund (BPS), Indiana University GCRC CReFF Award (BPS), Breast Cancer Research Foundation (GWS), K24 and 401 from NIH, Bethesda. MD (DAF) & Indiana University Melvin, Bren Simon Cancer Center and on behalf of the Friends for Life Consortium.

References

  1. 1.
    Carpenter JS (2005) State of the science: hot flashes and cancer. Part 1: definition, scope, impact, physiology, and measurement. Oncol Nurs Forum 32:959–968. doi: 10.1188/05.ONF.959-968 PubMedCrossRefGoogle Scholar
  2. 2.
    Stearns V, Schneider B, Henry NL, Hayes DF, Flockhart DA (2006) Breast cancer treatment and ovarian failure: risk factors and emerging genetic determinants. Nat Rev Cancer 6:886–893. doi: 10.1038/nrc1992 PubMedCrossRefGoogle Scholar
  3. 3.
    Coombes RC, Hall E, Gibson LJ et al (2004) A randomized trial of exemestane after two to three years of tamoxifen therapy in postmenopausal women with primary breast cancer. N Engl J Med 350:1081–1092. doi: 10.1056/NEJMoa040331 PubMedCrossRefGoogle Scholar
  4. 4.
    Morales L, Neven P, Timmerman D et al (2004) Acute effects of tamoxifen and third-generation aromatase inhibitors on menopausal symptoms of breast cancer patients. Anticancer Drugs 15:753–760. doi: 10.1097/00001813-200409000-00003 PubMedCrossRefGoogle Scholar
  5. 5.
    Mouridsen H, Gershanovich M, Sun Y et al (2001) Superior efficacy of letrozole versus tamoxifen as first-line therapy for postmenopausal women with advanced breast cancer: results of a phase III study of the International Letrozole Breast Cancer Group. J Clin Oncol 19:2596–2606PubMedGoogle Scholar
  6. 6.
    Carpenter JS, Storniolo AM, Johns S et al (2007) Randomized, double-blind, placebo-controlled crossover trials of venlafaxine for hot flashes after breast cancer. Oncologist 12:124–135. doi: 10.1634/theoncologist.12-1-124 PubMedCrossRefGoogle Scholar
  7. 7.
    Loibl S, Schwedler K, von Minckwitz G, Strohmeier R, Mehta KM, Kaufmann M (2007) Venlafaxine is superior to clonidine as treatment of hot flashes in breast cancer patients—a double-blind, randomized study. Ann Oncol 18:689–693. doi: 10.1093/annonc/mdl478 PubMedCrossRefGoogle Scholar
  8. 8.
    Nelson HD, Vesco KK, Haney E et al (2006) Nonhormonal therapies for menopausal hot flashes: systematic review and meta-analysis. JAMA 295:2057–2071. doi: 10.1001/jama.295.17.2057 PubMedCrossRefGoogle Scholar
  9. 9.
    Pandya KJ, Raubertas RF, Flynn PJ et al (2000) Oral clonidine in postmenopausal patients with breast cancer experiencing tamoxifen-induced hot flashes: a university of Rochester cancer center community clinical oncology program study. Ann Intern Med 132:788–793PubMedGoogle Scholar
  10. 10.
    Loprinzi CL, Kugler JW, Barton DL et al (2007) Phase III trial of gabapentin alone or in conjunction with an antidepressant in the management of hot flashes in women who have inadequate control with an antidepressant alone: NCCTG N03C5. J Clin Oncol 25:308–312. doi: 10.1200/JCO.2006.07.5390 PubMedCrossRefGoogle Scholar
  11. 11.
    Cieraad D, Conradt C, Jesinger D, Bakowski M (2006) Clinical study comparing the effects of sequential hormone replacement therapy with oestradiol/dydrogesterone and conjugated equine oestrogen/norgestrel on lipids and symptoms. Arch Gynecol Obstet 274:74–80. doi: 10.1007/s00404-006-0132-4 PubMedCrossRefGoogle Scholar
  12. 12.
    Holmberg L, Anderson H (2004) HABITS (hormonal replacement therapy after breast cancer—is it safe?), a randomised comparison: trial stopped. Lancet 363:453–455. doi: 10.1016/S0140-6736(04)15493-7 PubMedCrossRefGoogle Scholar
  13. 13.
    Jin Y, Desta Z, Stearns V et al (2005) CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J Natl Cancer Inst 97:30–39PubMedCrossRefGoogle Scholar
  14. 14.
    Freedman RR (2000) Hot flashes revisited. Menopause 7:3–4PubMedCrossRefGoogle Scholar
  15. 15.
    Dormire SL, Reame NK (2003) Menopausal hot flash frequency changes in response to experimental manipulation of blood glucose. Nurs Res 52:338–343. doi: 10.1097/00006199-200309000-00008 PubMedCrossRefGoogle Scholar
  16. 16.
    Malacara JM, Perez-Luque EL, Martinez-Garza S, Sanchez-Marin FJ (2004) The relationship of estrogen receptor-alpha polymorphism with symptoms and other characteristics in post-menopausal women. Maturitas 49:163–169. doi: 10.1016/j.maturitas.2004.01.002 PubMedCrossRefGoogle Scholar
  17. 17.
    Takeo C, Negishi E, Nakajima A et al (2005) Association of cytosine-adenine repeat polymorphism of the estrogen receptor-beta gene with menopausal symptoms. Gend Med 2:96–105. doi: 10.1016/S1550-8579(05)80016-6 PubMedCrossRefGoogle Scholar
  18. 18.
    Visvanathan K, Gallicchio L, Schilling C et al (2005) Cytochrome gene polymorphisms, serum estrogens, and hot flushes in midlife women. Obstet Gynecol 106:1372–1381PubMedGoogle Scholar
  19. 19.
    Balasubramanian SP, Brown NJ, Reed MW (2002) Role of genetic polymorphisms in tumour angiogenesis. Br J Cancer 87:1057–1065. doi: 10.1038/sj.bjc.6600625 PubMedCrossRefGoogle Scholar
  20. 20.
    Krippl P, Langsenlehner U, Renner W et al (2003) A common 936 C/T gene polymorphism of vascular endothelial growth factor is associated with decreased breast cancer risk. Int J Cancer 106:468–471. doi: 10.1002/ijc.11238 PubMedCrossRefGoogle Scholar
  21. 21.
    Schneider BP, Radovich M, Sledge GW et al (2008) Association of polymorphisms of angiogenesis genes with breast cancer. Breast Cancer Res Treat 111(1):157–163PubMedCrossRefGoogle Scholar
  22. 22.
    Ray D, Mishra M, Ralph S, Read I, Davies R, Brenchley P (2004) Association of the VEGF gene with proliferative diabetic retinopathy but not proteinuria in diabetes. Diabetes 53:861–864. doi: 10.2337/diabetes.53.3.861 PubMedCrossRefGoogle Scholar
  23. 23.
    Summers AM, Coupes BM, Brennan MF, Ralph SA, Short CD, Brenchley PE (2005) VEGF-460 genotype plays an important role in progression to chronic kidney disease stage 5. Nephrol Dial Transplant 20:2427–2432. doi: 10.1093/ndt/gfi029 PubMedCrossRefGoogle Scholar
  24. 24.
    Banyasz I, Szabo S, Bokodi G et al (2006) Genetic polymorphisms of vascular endothelial growth factor in severe pre-eclampsia. Mol Hum Reprod 12:233–236. doi: 10.1093/molehr/gal024 PubMedCrossRefGoogle Scholar
  25. 25.
    Lemler S, Rufenbarger C, Skaar T et al (2005) Creating a DNA bank for pharmacogenomic epidemiology: the Friends for Life study. Breast Cancer Res Treat 94:S153Google Scholar
  26. 26.
    Crandall C, Petersen L, Ganz PA, Greendale GA (2004) Association of breast cancer and its therapy with menopause-related symptoms. Menopause 11:519–530. doi: 10.1097/01.GME.0000117061.40493.AB PubMedCrossRefGoogle Scholar
  27. 27.
    Miller SR, Gallicchio LM, Lewis LM et al (2006) Association between race and hot flashes in midlife women. Maturitas 54:260–269. doi: 10.1016/j.maturitas.2005.12.001 PubMedCrossRefGoogle Scholar
  28. 28.
    Appling S, Paez K, Allen J (2007) Ethnicity and vasomotor symptoms in postmenopausal women. [Comparative Study. Journal Article. Research Support, N.I.H., Extramural]. J Womens Health 16(8):1130–1138Google Scholar
  29. 29.
    Whiteman MK, Staropoli CA, Benedict JC, Borgeest C, Flaws JA (2003) Risk factors for hot flashes in midlife women. J Womens Health (Larchmt) 12:459–472. doi: 10.1089/154099903766651586 CrossRefGoogle Scholar
  30. 30.
    Carpenter JS, Monahan PO, Azzouz F (2004) Accuracy of subjective hot flush reports compared with continuous sternal skin conductance monitoring. Obstet Gynecol 104:1322–1326PubMedGoogle Scholar
  31. 31.
    Thurston RC, Blumenthal JA, Babyak MA, Sherwood A (2005) Emotional antecedents of hot flashes during daily life. Psychosom Med 67:137–146. doi: 10.1097/01.psy.0000149255.04806.07 PubMedCrossRefGoogle Scholar
  32. 32.
    Esteban MA, Maxwell PH (2005) HIF, a missing link between metabolism and cancer. Nat Med 11:1047–1048. doi: 10.1038/nm1005-1047 PubMedCrossRefGoogle Scholar
  33. 33.
    Shi J, Simpkins JW (1997) 17 β-estradiol modulation of glucose transporter 1 (GLUT 1) expression in blood-brain barrier. Am J Physiol: Endocrinol Metab 272:E1016–E1022Google Scholar
  34. 34.
    Brune B, Zhou J (2003) The role of nitric oxide (NO) in stability regulation of hypoxia inducible factor-1 alpha (HIF-1 alpha). Curr Med Chem 10:845–855. doi: 10.2174/0929867033457746 PubMedCrossRefGoogle Scholar
  35. 35.
    Greene RA (2000) Estrogen and cerebral blood flow: a mechanism to explain the impact of estrogen on the incidence and treatment of Alzheimer’s disease. Int J Fertil Womens Med 45:253–257PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Bryan P. Schneider
    • 1
    • 2
  • Milan Radovich
    • 1
  • David A. Flockhart
    • 1
  • Janet S. Carpenter
    • 3
  • Lang Li
    • 1
  • Jason D. Robarge
    • 1
  • Anna M. Storniolo
    • 1
  • Bradley A. Hancock
    • 1
  • Todd C. Skaar
    • 1
  • George W. Sledge
    • 1
  1. 1.Department of MedicineIndiana University School of MedicineIndianapolisUSA
  2. 2.Indiana Cancer PavilionIndianapolisUSA
  3. 3.Department of Adult HealthIndiana University School of NursingIndianapolisUSA

Personalised recommendations