Advertisement

Breast Cancer Research and Treatment

, Volume 117, Issue 2, pp 423–431 | Cite as

Down regulation of circadian clock gene Period 2 accelerates breast cancer growth by altering its daily growth rhythm

  • Xiaoming Yang
  • Patricia A. Wood
  • Eun-Young Oh
  • Jovelyn Du-Quiton
  • Christine M. Ansell
  • William J. M. Hrushesky
Brief Report

Abstract

Purpose Per2, a core circadian clock gene, has tumor suppressor properties and is mutated or down regulated in human breast cancers. We have manipulated the expression of this gene in vitro and in vivo to more fully understand how the Per2 clock gene product affects cancer growth. Methods We used siRNA and shRNA to down regulate Per2 expression in vitro and in vivo and measured cancer cell proliferation, tumor growth rate and several molecular pathways relevant to cancer growth and their circadian organizations. All statistical tests were two-sided. Results Down regulation of functional Per2 gene expression increases Cyclin D and Cyclin E levels and doubles in vitro breast cancer cell proliferation (P < 0.05). Down regulation of Per2 also accelerates in vivo tumor growth and doubles the daily amplitude of the tumor growth rhythm (P < 0.05). Conclusions The clock gene Per2 exerts its tumor suppressor function in a circadian time dependent manner. Therefore, Per2 and perhaps other clock genes represent a new class of potential therapeutic targets whose manipulation will modulate cancer growth and cancer cell proliferation.

Keywords

Circadian Breast cancer Growth rate Growth rhythm Per2 Cyclin D 

References

  1. 1.
    Cermakian N, Boivin DB (2003) A molecular perspective of human circadian rhythm disorders. Brain Res Brain Res Rev 42(3):204–220. doi: 10.1016/S0165-0173(03)00171-1 PubMedCrossRefGoogle Scholar
  2. 2.
    Vansteensel MJ, Michel S, Meijer JH (2008) Organization of cell and tissue circadian pacemakers: a comparison among species. Brain Res Rev 58(1):18–47PubMedCrossRefGoogle Scholar
  3. 3.
    Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418(6901):935–941. doi: 10.1038/nature00965 PubMedCrossRefGoogle Scholar
  4. 4.
    Herzog ED (2007) Neurons and networks in daily rhythms. Nat Rev Neurosci 8(10):790–802. doi: 10.1038/nrn2215 PubMedCrossRefGoogle Scholar
  5. 5.
    Liu AC et al (2007) Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell 129(3):605–616. doi: 10.1016/j.cell.2007.02.047 PubMedCrossRefGoogle Scholar
  6. 6.
    Kuhlman SJ, McMahon DG (2006) Encoding the ins and outs of circadian pacemaking. J Biol Rhythms 21(6):470–481. doi: 10.1177/0748730406294316 PubMedCrossRefGoogle Scholar
  7. 7.
    Lee C et al (2001) Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107(7):855–867. doi: 10.1016/S0092-8674(01)00610-9 PubMedCrossRefGoogle Scholar
  8. 8.
    Ko CH, Takahashi JS (2006) Molecular components of the mammalian circadian clock. Hum Mol Genet 15(Spec No 2):R271–R277PubMedCrossRefGoogle Scholar
  9. 9.
    Schibler U (2007) The daily timing of gene expression and physiology in mammals. Dialogues Clin Neurosci 9(3):257–272PubMedGoogle Scholar
  10. 10.
    Oishi K et al (2003) Genome-wide expression analysis of mouse liver reveals CLOCK-regulated circadian output genes. J Biol Chem 278(42):41519–41527. doi: 10.1074/jbc.M304564200 PubMedCrossRefGoogle Scholar
  11. 11.
    Lowrey PL, Takahashi JS (2004) Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet 5:407–441. doi: 10.1146/annurev.genom.5.061903.175925 PubMedCrossRefGoogle Scholar
  12. 12.
    Buchi K et al (1991) Circadian rhythm of cellular proliferation in the human rectal mucosa. Gastroenterology 101:410–415PubMedGoogle Scholar
  13. 13.
    Bjarnason GA et al (2001) Circadian expression of clock genes in human oral mucosa and skin: association with specific cell-cycle phases. Am J Pathol 158(5):1793–1801PubMedGoogle Scholar
  14. 14.
    Smaaland R et al (1991) DNA synthesis in human bone marrow is circadian stage dependent. Blood 77:2603–2611PubMedGoogle Scholar
  15. 15.
    Matsuo T et al (2003) Control mechanism of the circadian clock for timing of cell division in vivo. Science 302(5643):255–259. doi: 10.1126/science.1086271 PubMedCrossRefGoogle Scholar
  16. 16.
    You S et al (2005) Daily coordination of cancer growth and circadian clock gene expression. Breast Cancer Res Treat 91(1):47–60. doi: 10.1007/s10549-004-6603-z PubMedCrossRefGoogle Scholar
  17. 17.
    Wood PA et al (2006) Circadian clock coordinates cancer cell cycle progression, thymidylate synthase, and 5-fluorouracil therapeutic index. Mol Cancer Ther 5(8):2023–2033. doi: 10.1158/1535-7163.MCT-06-0177 PubMedCrossRefGoogle Scholar
  18. 18.
    Schernhammer ES et al (2001) Rotating night shifts and risk of breast cancer in women participating in the nurses’ health study. J Natl Cancer Inst 93(20):1563–1568PubMedCrossRefGoogle Scholar
  19. 19.
    Schernhammer ES et al (2003) Night-shift work and risk of colorectal cancer in the nurses’ health study. J Natl Cancer Inst 95(11):825–828PubMedGoogle Scholar
  20. 20.
    Viswanathan AN, Hankinson SE, Schernhammer ES (2007) Night shift work and the risk of endometrial cancer. Cancer Res 67(21):10618–10622. doi: 10.1158/0008-5472.CAN-07-2485 PubMedCrossRefGoogle Scholar
  21. 21.
    Sack RL et al (2007) Circadian rhythm sleep disorders: part I, basic principles, shift work and jet lag disorders. An American Academy of Sleep Medicine review. Sleep 30(11):1460–1483PubMedGoogle Scholar
  22. 22.
    Filipski E et al (2002) Host circadian clock as a control point in tumor progression. J Natl Cancer Inst 94(9):690–697PubMedGoogle Scholar
  23. 23.
    Blask DE et al (2003) Growth and fatty acid metabolism of human breast cancer (MCF-7) xenografts in nude rats: impact of constant light-induced nocturnal melatonin suppression. Breast Cancer Res Treat 79(3):313–320. doi: 10.1023/A:1024030518065 PubMedCrossRefGoogle Scholar
  24. 24.
    Filipski E et al (2004) Effects of chronic jet lag on tumor progression in mice. Cancer Res 64(21):7879–7885. doi: 10.1158/0008-5472.CAN-04-0674 PubMedCrossRefGoogle Scholar
  25. 25.
    Anisimov VN (2006) Light pollution, reproductive function and cancer risk. Neuroendocrinol Lett 27(1–2):35–52PubMedGoogle Scholar
  26. 26.
    Ancoli-Israel S, Moore PJ, Jones V (2001) The relationship between fatigue and sleep in cancer patients: a review. Eur J Cancer Care (Engl) 10(4):245–255. doi: 10.1046/j.1365-2354.2001.00263.x CrossRefGoogle Scholar
  27. 27.
    Sephton SE et al (2000) Diurnal cortisol rhythm as a predictor of breast cancer survival. J Natl Cancer Inst 92(12):994–1000. doi: 10.1093/jnci/92.12.994 PubMedCrossRefGoogle Scholar
  28. 28.
    Hrushesky WJ (1985) Circadian timing of cancer chemotherapy. Science 228(4695):73–75. doi: 10.1126/science.3883493 PubMedCrossRefGoogle Scholar
  29. 29.
    Levin RD et al (2005) Circadian function in patients with advanced non-small-cell lung cancer. Br J Cancer 93(11):1202–1208. doi: 10.1038/sj.bjc.6602859 PubMedCrossRefGoogle Scholar
  30. 30.
    Fu L et al (2002) The circadian gene Period 2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111(1):41–50. doi: 10.1016/S0092-8674(02)00961-3 PubMedCrossRefGoogle Scholar
  31. 31.
    Fu L, Lee CC (2003) The circadian clock: pacemaker and tumour suppressor. Nat Rev Cancer 3(5):350–361. doi: 10.1038/nrc1072 PubMedCrossRefGoogle Scholar
  32. 32.
    Sjoblom T et al (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314(5797):268–274. doi: 10.1126/science.1133427 PubMedCrossRefGoogle Scholar
  33. 33.
    Chen ST et al (2005) Deregulated expression of the PER1, PER2 and PER3 genes in breast cancers. Carcinogenesis 26(7):1241–1246. doi: 10.1093/carcin/bgi075 PubMedCrossRefGoogle Scholar
  34. 34.
    Winter S et al (2007) Expression of the circadian clock genes Per1 and Per2 in sporadic and familial breast tumors. Neoplasia 9(10):797–800. doi: 10.1593/neo.07595 PubMedCrossRefGoogle Scholar
  35. 35.
    Hua H et al (2007) Inhibition of tumorigenesis by intratumoral delivery of the circadian gene mPer2 in C57BL/6 mice. Cancer Gene Ther 14(9):815–818. doi: 10.1038/sj.cgt.7701061 PubMedCrossRefGoogle Scholar
  36. 36.
    Gery S et al (2007) The clock gene Per2 links the circadian system to the estrogen receptor. Oncogene 26(57):7916–7920. doi: 10.1038/sj.onc.1210585 PubMedCrossRefGoogle Scholar
  37. 37.
    Devroe E, Silver PA (2002) Retrovirus-delivered siRNA. BMC Biotechnol 2:15. doi: 10.1186/1472-6750-2-15 PubMedCrossRefGoogle Scholar
  38. 38.
    Rubinson DA et al (2003) A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 33(3):401–406. doi: 10.1038/ng1117 PubMedCrossRefGoogle Scholar
  39. 39.
    Balsalobre A, Marcacci L, Schibler U (2000) Multiple signaling pathways elicit circadian gene expression in cultured Rat-1 fibroblasts. Curr Biol 10(20):1291–1294. doi: 10.1016/S0960-9822(00)00758-2 PubMedCrossRefGoogle Scholar
  40. 40.
    Tsuchiya Y, Akashi M, Nishida E (2003) Temperature compensation and temperature resetting of circadian rhythms in mammalian cultured fibroblasts. Genes Cells 8(8):713–720. doi: 10.1046/j.1365-2443.2003.00669.x PubMedCrossRefGoogle Scholar
  41. 41.
    Balsalobre A, Damiola F, Schibler U (1998) A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93(6):929–937. doi: 10.1016/S0092-8674(00)81199-X PubMedCrossRefGoogle Scholar
  42. 42.
    Yagita K et al (2001) Molecular mechanisms of the biologic clock in cultured fibroblasts. Science 292:278–281. doi: 10.1126/science.1059542 PubMedCrossRefGoogle Scholar
  43. 43.
    Gery S et al (2006) The circadian gene per1 plays an important role in cell growth and DNA damage control in human cancer cells. Mol Cell 22(3):375–382. doi: 10.1016/j.molcel.2006.03.038 PubMedCrossRefGoogle Scholar
  44. 44.
    Gupta S et al (2004) Inducible, reversible, and stable RNA interference in mammalian cells. Proc Natl Acad Sci USA 101(7):1927–1932. doi: 10.1073/pnas.0306111101 PubMedCrossRefGoogle Scholar
  45. 45.
    Liu XD et al (2004) Short hairpin RNA and retroviral vector-mediated silencing of p53 in mammalian cells. Biochem Biophys Res Commun 324(4):1173–1178. doi: 10.1016/j.bbrc.2004.09.190 PubMedCrossRefGoogle Scholar
  46. 46.
    Hao DL et al (2005) Knockdown of human p53 gene expression in 293-T cells by retroviral vector-mediated short hairpin RNA. Acta Biochim Biophys Sin (Shanghai) 37(11):779–783. doi: 10.1111/j.1745-7270.2005.00107.x CrossRefGoogle Scholar
  47. 47.
    Jia F, Zhang YZ, Liu CM (2006) A retrovirus-based system to stably silence hepatitis B virus genes by RNA interference. Biotechnol Lett 28(20):1679–1685. doi: 10.1007/s10529-006-9138-z PubMedCrossRefGoogle Scholar
  48. 48.
    Hurst CD, Tomlinson DC, Williams SV, Platt FM, Knowles MA (2008) Inactivation of the Rb pathway and overexpression of both isoforms of E2F3 are obligate events in bladder tumors with 6p22 amplification. Oncogene 27(19):2716–2727PubMedCrossRefGoogle Scholar
  49. 49.
    Wood PA, Hrushesky WJ, Klevecz R (1998) Distinct circadian time structures characterize myeloid and erythroid progenitor and multipotential cell clonogenicity as well as marrow precursor proliferation dynamics. Exp Hematol 26(6):523–533PubMedGoogle Scholar
  50. 50.
    Nagoshi E et al (2004) Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119:693–705PubMedCrossRefGoogle Scholar
  51. 51.
    Yamamoto T et al (2004) Transcriptional oscillation of canonical clock genes in mouse peripheral tissues. BMC Mol Biol 5:18. doi: 10.1186/1471-2199-5-18 PubMedCrossRefGoogle Scholar
  52. 52.
    Alvarez JD, Sehgal A (2005) The thymus is similar to the testis in its pattern of circadian clock gene expression. J Biol Rhythms 20(2):111–121. doi: 10.1177/0748730404274078 PubMedCrossRefGoogle Scholar
  53. 53.
    Hrushesky WJ, Lannin D, Haus E (1998) Evidence for an ontogenetic basis for circadian coordination of cancer cell proliferation. J Natl Cancer Inst 90(19):1480–1484. doi: 10.1093/jnci/90.19.1480 PubMedCrossRefGoogle Scholar
  54. 54.
    Gorbacheva VY et al (2005) Circadian sensitivity to the chemotherapeutic agent cyclophosphamide depends on the functional status of the CLOCK/BMAL1 transactivation complex. Proc Natl Acad Sci USA 102:3407–3412. doi: 10.1073/pnas.0409897102 PubMedCrossRefGoogle Scholar
  55. 55.
    Sothern RB et al (1989) Control of a murine plasmacytoma with doxorubicin-cisplatin: dependence on circadian stage of treatment. J Natl Cancer Inst 81(2):135–145. doi: 10.1093/jnci/81.2.135 PubMedCrossRefGoogle Scholar
  56. 56.
    Levi F et al (2007) Implications of circadian clocks for the rhythmic delivery of cancer therapeutics. Adv Drug Deliv Rev 59(9–10):1015–1035. doi: 10.1016/j.addr.2006.11.001 PubMedCrossRefGoogle Scholar
  57. 57.
    Wood PA, Hrushesky WJ (1996) Circadian rhythms and cancer chemotherapy. Crit Rev Eukaryot Gene Expr 6(4):299–343PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Xiaoming Yang
    • 1
  • Patricia A. Wood
    • 1
    • 2
  • Eun-Young Oh
    • 1
  • Jovelyn Du-Quiton
    • 1
  • Christine M. Ansell
    • 1
  • William J. M. Hrushesky
    • 1
    • 2
  1. 1.Medical Chronobiology LaboratoryWJB Dorn VA Medical CenterColumbiaUSA
  2. 2.School of MedicineUniversity of South CarolinaColumbiaUSA

Personalised recommendations