Breast Cancer Research and Treatment

, Volume 115, Issue 2, pp 241–254

Proliferation is the strongest prognosticator in node-negative breast cancer: significance, error sources, alternatives and comparison with molecular prognostic markers

  • Jan P. A. Baak
  • Einar Gudlaugsson
  • Ivar Skaland
  • Lydia Hui Ru Guo
  • Jan Klos
  • Tone Hoel Lende
  • Håvard Søiland
  • Emiel A. M. Janssen
  • Axel zur Hausen


Independent studies have shown that in node negative breast cancer patients less than 71 years, the proliferation marker mitotic activity index (MAI) is the strongest, most well reproducible prognosticator and chemotherapy success predictor. The MAI overshadows the prognostic value of tubule formation, nuclear atypia and thereby grade. An often used crude mitotic impression is much less prognostic than the MAI; strict adherence to the MAI protocol is therefore important. The prognostic value of the MAI is age dependent: although patients with a MAI ≥ 10 always have a poor prognosis irrespective of age, a low MAI (<10) loses its favourable prognostic association in women >70 years. PPH3 counts are prognostically stronger than the MAI, and markers such as Cyclin-B and E2FR are promising, but must be validated. Compared with commercial prognostic gene expression signatures, the MAI is at least as strong prognostically, has far fewer false positive results and as such should be included as an independent feature in any node negative breast cancer pathology report.


Breast cancer Proliferation Mitotic activity index Prognosis Error sources Molecular markers 


  1. 1.
    Goldhirsch A, Wood WC, Gelber RD, Coates AS, Thürlimann B, Senn HJ et al (2003) Meeting highlights: updated international expert consensus on the primary therapy of early breast cancer. J Clin Oncol 21:3357–3365. doi:10.1200/JCO.2003.04.576 PubMedCrossRefGoogle Scholar
  2. 2.
    Early Breast Cancer Trialists’ Collaborative Group (EBCTG) (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365:1687–1717. doi:10.1016/S0140-6736(05)66544-0 CrossRefGoogle Scholar
  3. 3.
    Adjuvant! Online, at
  4. 4.
    Boyages J, Chua B, Taylor R et al (2002) Use of the St. Gallen classification for patients with node-negative breast cancer may lead to overuse of adjuvant chemotherapy. Br J Surg 89:789–796. doi:10.1046/j.1365-2168.2002.02113.x PubMedCrossRefGoogle Scholar
  5. 5.
    Baak JP, van Diest PJ, Voorhorst FJ, van der Wall E, Beex LV, Vermorken JB et al (2007) The prognostic value of proliferation in lymph-node-negative breast cancer patients is age dependent. Eur J Cancer 43(3):527–535. doi:10.1016/j.ejca.2006.10.001 PubMedCrossRefGoogle Scholar
  6. 6.
    Baak JP, Wisse-Brekelmans EC, Kurver PH, van Gorp LH, Voorhorst FJ, Miettinen OS (1992) Regional differences in breast cancer survival are correlated with differences in differentiation and rate of proliferation. Hum Pathol 23(9):989–992. doi:10.1016/0046-8177(92)90259-6 PubMedCrossRefGoogle Scholar
  7. 7.
    Volpi A, De Paola F, Nanni O, Granato AM, Bajorko P, Becciolini A et al (2000) Prognostic significance of biologic markers in node-negative breast cancer patients, a prospective study. Breast Cancer Res Treat 63:181–192. doi:10.1023/A:1006464426977 PubMedCrossRefGoogle Scholar
  8. 8.
    Desmedt C, Sotiriou C (2006) Proliferation: the most prominent predictor of clinical outcome in breast cancer. Cell Cycle 19:2198–2202Google Scholar
  9. 9.
    Baak JP, van Diest PJ, Voorhorst FJ, van der Wall E, Beex LV, Vermorken JB et al (2005) Prospective multicenter validation of the independent prognostic value of the mitotic activity index in lymph node-negative breast cancer patients younger than 55 years. J Clin Oncol 23(25):5993–6001. doi:10.1200/JCO.2005.05.511 PubMedCrossRefGoogle Scholar
  10. 10.
    Van Diest PJ, Baak JPA, Matze-Cok P, Wisse-Brekelmans EC, van Galen CM, Kurver PH et al (1992) Reproducibility of mitosis counting in 2469 breast cancer specimens, results from the multicentre morphometric mammary carcinoma project. Hum Pathol 23:603–607. doi:10.1016/0046-8177(92)90313-R PubMedCrossRefGoogle Scholar
  11. 11.
    Janssen EAM, van Diest PJ, Søiland H, Gudlaugson E, Nysted A, Voorhorst FJ et al (2006) Success factors of adjuvant chemotherapy in node-negative breast cancer patients under 55 years. Cell Oncol 28(5–6):295–303PubMedGoogle Scholar
  12. 12.
    Amadori D, Nanni O, Marangolo M, Pacini P, Ravaioli A, Rossi A et al (2000) Disease-free survival advantage of adjuvant cyclophosphamide, methotrexate, and fluorouracil in patients with node-negative, rapidly proliferating breast cancer: a randomized multicenter study. J Clin Oncol 18:3125–3134PubMedGoogle Scholar
  13. 13.
    Fiets WE, Bellot FE, Struikmans H, Blankenstein MA, Nortier JW (2005) Prognostic value of mitotic counts in axillary node negative breast cancer patients with predominantly well-differentiated tumours. Eur J Surg Oncol 31(2):128–133. doi:10.1016/j.ejso.2004.08.012 PubMedCrossRefGoogle Scholar
  14. 14.
    Westenend PJ, Meurs CJ, Damhuis RA (2005) Tumour size and vascular invasion predict distant metastasis in stage I breast cancer. Grade distinguishes early and late metastasis. J Clin Pathol 58(2):196–201. doi:10.1136/jcp.2004.018515 PubMedCrossRefGoogle Scholar
  15. 15.
    Hall PA, Going JJ (1999) Predicting the future, a critical appraisal of cancer prognosis studies. Histopathology 35:489–494. doi:10.1046/j.1365-2559.1999.00862.x PubMedCrossRefGoogle Scholar
  16. 16.
    Baak JP (2002) The framework of pathology, good laboratory practice by quantitative and molecular methods. J Pathol 198(3):277–283. doi:10.1002/path.1233 PubMedCrossRefGoogle Scholar
  17. 17.
    Baak JP, van Diest PJ, Ariens AT, van Beek MW, Bellot SM, Fijnheer J et al (1989) The Multicenter Morphometric Mammary Carcinoma Project (MMMCP). A nationwide prospective study on reproducibility and prognostic power of routine quantitative assessments in The Netherlands. Pathol Res Pract 185(5):664–670PubMedGoogle Scholar
  18. 18.
    Bullough WS (1950) Mitotic activity of the tissue in dead mice, and in tissues kept in physiological salt solutions. Exp Cell Res 1:410–420. doi:10.1016/0014-4827(50)90019-X CrossRefGoogle Scholar
  19. 19.
    Graem N, Helweg-Larsen K (1979) Mitotic activity and delay in fixation of tumour tissue. The influence of delay in fixation on mitotic activity of a human osteogenic sarcoma grown in athymic nude mice. Acta Pathol Microbiol Scand [A] 87A(5):375–378Google Scholar
  20. 20.
    Donhuijsen K, Schmidt U, Hirsche H, van Beuningen D, Budach V (1990) Changes in mitotic rate and cell cycle fractions caused by delay in fixation. Hum Pathol 21:709–714. doi:10.1016/0046-8177(90)90030-9 PubMedCrossRefGoogle Scholar
  21. 21.
    Bergers E, Jannink I, van Diest PJ, Cuesta MA, Meyer S, van Mourik JC et al (1997) Influence of fixation delay on mitotic activity and flow cytometric %S-phase. Hum Pathol 28:95–100. doi:10.1016/S0046-8177(97)90286-0 PubMedCrossRefGoogle Scholar
  22. 22.
    Rakha EA, El-Sayed ME, Lee AH, Elston CW, Grainge MJ, Hodi Z et al (2008) Prognostic Significance of Nottingham Histologic Grade in Invasive Breast Carcinoma. J Clin Oncol 26(19):3153–3158Google Scholar
  23. 23.
    Ellis IO, Schnitt SJ, Sastre-Garau X, Bussolati G, Tavassoli FA, Eusebi V et al (2003) Invasive breast carcinoma. In: Tavassoli FA, Devilee P (eds) Pathology and genetics of tumours of the breast and female genital tract organs. IARC Press, Lyon, pp 18–19Google Scholar
  24. 24.
    Elston CW, Ellis IO (1991) Pathological prognostic factors in breast cancer I. The value of histological grade in breast cancer, experience from a large study with long-term follow-up. Histopathology 19:403–410. doi:10.1111/j.1365-2559.1991.tb00229.x PubMedCrossRefGoogle Scholar
  25. 25.
    Baak JP, van Diest PJ, Voorhorst FJ, van der Wall E, Beex LV, Vermorken JB, et al (2007) other collaborators of the Multicenter Morphometric Mammary Carcinoma Project (MMMCP). The prognostic value of proliferation in lymph-node-negative breast cancer patients is age dependent. Eur J Cancer 43(3):527–535. doi:10.1016/j.ejca.2006.10.001 Google Scholar
  26. 26.
    Eppenberger-Castori S, Moore DH Jr, Thor AD, Edgerton SM, Kueng W, Eppenberger U et al (2002) Age-associated biomarker profiles of human breast cancer. Int J Biochem Cell Biol 34:1318–1330. doi:10.1016/S1357-2725(02)00052-3 PubMedCrossRefGoogle Scholar
  27. 27.
    Baak JP, van Diest PJ, Janssen EA, Gudlaugsson E, Voorhorst FJ, van der Wall E et al (2008) Proliferation accurately identifies the high-risk patients among small, low-grade, lymph node-negative invasive breast cancers. Ann Oncol 19(4):649–654. doi:10.1093/annonc/mdm535 PubMedCrossRefGoogle Scholar
  28. 28.
    Greenough RB (1925) Varying degrees of malignancy in cancer of the breast. J Cancer Res 9:425–463Google Scholar
  29. 29.
    Bloom HJG, Richardson WW (1957) Histological grading and prognosis in breast cancer. Br J Cancer 11:359–377PubMedGoogle Scholar
  30. 30.
    Black MM, Opler SR, Speer FD (1955) Survival in breast cancer cases in relation to the structure of the primary tumour and regional lymph nodes. Surg Gynecol Obstet 100(5):543–551PubMedGoogle Scholar
  31. 31.
    Fisher ER (1986) Prognostic and therapeutic significance of pathological features of breast cancer. NCI Monogr (1):29–34Google Scholar
  32. 32.
    Skaland I, van Diest PJ, Janssen EAM, Gudlaugsson E, Baak JPA (2008) Prognostic differences of WHO-assessed mitotic activity index (MAI) and mitotic impression by quick scanning in invasive ductal breast cancer patients under 55 years of age. Hum Pathol 39(4):584–590. doi:10.1016/j.humpath.2007.08.016 PubMedCrossRefGoogle Scholar
  33. 33.
    Jannink I, van Diest PJ, Baak JPA (1996) Comparison of the prognostic value of mitotic frequency and mitotic activity index in breast cancer. Breast 5:31–36. doi:10.1016/S0960-9776(96)90046-6 CrossRefGoogle Scholar
  34. 34.
    Jannink I, van Diest PJ, Baak JPA (1995) Comparison of the prognostic value of four methods to assess mitotic activity in 186 invasive breast cancer patients: classical and random mitotic activity assessments with correction for volume percentage of epithelium. Hum Pathol 26:1086–1092. doi:10.1016/0046-8177(95)90270-8 PubMedCrossRefGoogle Scholar
  35. 35.
    Wharton SB, Chan KK, Anderson JR, Stoeber K, Williams GH (2001) Replicative Mcm2 protein as a novel proliferation marker in oligodendrogliomas and its relationship to Ki67 labeling index, histological grade and prognosis. Neuropathol Appl Neurobiol 27:305–313. doi:10.1046/j.0305-1846.2001.00333.x PubMedCrossRefGoogle Scholar
  36. 36.
    Wharton SB, Hibberd S, Eward KL, Crimmings D, Jellinek DA, Levy D et al (2004) DNA replication licensing and cell cycle kinetics of oligodendroglial tumours. Br J Cancer 91:262–269PubMedGoogle Scholar
  37. 37.
    Scott IS, Morris LS, Bird K, Davies RJ, Vowler SL, Rushbrook SM et al (2003) A novel immunohistochemical method to estimate cell-cycle phase distribution in archival tissue: implications for the prediction of outcome in colorectal cancer. J Pathol 201:187–197. doi:10.1002/path.1444 PubMedCrossRefGoogle Scholar
  38. 38.
    Yoshida T, Tanaka S, Mogi A, Shitara Y, Kuwano H (2004) The clinical significance of Cyclin B1 and Wee1 expression in non-small-cell lung cancer. Ann Oncol 15(2):252–256. doi:10.1093/annonc/mdh073 PubMedCrossRefGoogle Scholar
  39. 39.
    Dudderidge TJ, Stoeber K, Loddo M, Atkinson G, Fanshawe T, Griffiths DF et al (2005) Mcm2, geminin and Ki67 define proliferative state and are prognostic markers in renal cell carcinoma. Clin Cancer Res 11:2510–2517. doi:10.1158/1078-0432.CCR-04-1776 PubMedCrossRefGoogle Scholar
  40. 40.
    Shetty A, Loddo M, Fanshawe T, Prevost AT, Sainsbury R, Williams GH et al (2005) DNA replication licensing and cell cycle kinetics of normal and neoplastic breast. Br J Cancer 93:1295–1300. doi:10.1038/sj.bjc.6602829 PubMedCrossRefGoogle Scholar
  41. 41.
    Obermann EC, Eward KL, Dogan A, Paul EA, Loddo M, Munson P et al (2005) DNA replication licensing in peripheral B-cell lymphoma. J Pathol 205:318–328. doi:10.1002/path.1695 PubMedCrossRefGoogle Scholar
  42. 42.
    van Diest PJ, van der Wall E, Baak JP (2004) Prognostic value of proliferation in invasive breast cancer, a review. J Clin Pathol 57(7):675–681. doi:10.1136/jcp. 2003.010777 PubMedCrossRefGoogle Scholar
  43. 43.
    Skaland I, Janssen EA, Gudlaugsson E, Klos J, Kjellevold KH, Søiland H et al (2007) Phosphohistone H3 expression has much stronger prognostic value than classical prognosticators in invasive lymph node-negative breast cancer patients less than 55 years of age. Mod Pathol 20(12):1307–1315. doi:10.1038/modpathol.3800972 PubMedCrossRefGoogle Scholar
  44. 44.
    Brenner RM, Slayden OD, Rodgers WH et al (2003) Immunohistochemical assessment of mitotic activity with an antibody to phosphorylated histone PPH3 in the macaque and human endometrium. Hum Reprod 18:1185–1193. doi:10.1093/humrep/deg255 PubMedCrossRefGoogle Scholar
  45. 45.
    Juan G, Traganos F, Darzynkiewicz Z (1999) Histone PPH3 phosphorylation in human monocytes and during HL-60 cell differentiation. Exp Cell Res 246:212–220. doi:10.1006/excr.1998.4283 PubMedCrossRefGoogle Scholar
  46. 46.
    Bossard C, Jarry A, Colombeix C et al (2006) PPH3-based a phosphohistone PPH3 labelling for histoprognostic grading of breast adenocarcinomas and computerassisted determination of mitotic index. J Clin Pathol 59:706–710. doi:10.1136/jcp. 2005.030452 PubMedCrossRefGoogle Scholar
  47. 47.
    Skaland I, Janssen EAM, Gudlaugsson E, Klos J, Kjellevold KH, Søiland S, Baak JPA (2008) Validating the prognostic value of proliferation measured by Phosphohistone H3 (PPH3) in invasive lymph node-negative breast cancer patients less than 71 years of age. Breast Cancer Res Treat. 10.1007/s10549-008-9980-x
  48. 48.
    Rudolph P, Kühling H, Alm P, Fernö M, Baldetorp B, Olsson H et al (2003) Differential prognostic impact of the cyclins E and B in premenopausal and postmenopausal women with lymph node-negative breast cancer. Int J Cancer 105(5):674–680. doi:10.1002/ijc.11132 PubMedCrossRefGoogle Scholar
  49. 49.
    Winters ZE, Hunt NC, Bradburn MJ, Royds JA, Turley H, Harris AL et al (2001) Subcellular localisation of cyclin B, Cdc2 and p21(WAF1/CIP1) in breast cancer and association with prognosis. Eur J Cancer 37:2405–2412. doi:10.1016/S0959-8049(01)00327-6 PubMedCrossRefGoogle Scholar
  50. 50.
    Suzuki T, Urano T, Miki Y, Moriya T, Akahira J, Ishida T et al (2007) Nuclear cyclin B1 in human breast carcinoma as a potent prognostic factor. Cancer Sci 98:644–651. doi:10.1111/j.1349-7006.2007.00444.x PubMedCrossRefGoogle Scholar
  51. 51.
    Gonzalez MA, Tachibana KK, Chin S-F, Callagy G, Madine M, Vowler SL et al (2004) Geminin predicts adverse clinical outcome in breast cancer by reflecting cell-cycle progression. J Pathol 204:121–130. doi:10.1002/path.1625 PubMedCrossRefGoogle Scholar
  52. 52.
    Gonzalez MA, Pinder SE, Callagy G, Vowler SL, Morris LS, Bird K et al (2003) Minichromosome maintenance protein 2 is strong independent prognostic marker in breast cancer. J Clin Oncol 21:4306–4313. doi:10.1200/JCO.2003.04.121 PubMedCrossRefGoogle Scholar
  53. 53.
    Björck E, Ek S, Landgren O, Jerkeman M, Ehinger M, Björkholm M et al (2005) High expression of cyclin B1 predicts a favorable outcome in patients with follicular lymphoma. Blood 105:2908–2915. doi:10.1182/blood-2004-07-2721 PubMedCrossRefGoogle Scholar
  54. 54.
    Vuaroqueaux V, Urban P, Labuhn M, Delorenzi M, Wirapati P, Benz CC et al (2007) Low E2F1 transcript levels are a strong determinant of favorable breast cancer outcome. Breast Cancer Res 9(3):R33. doi:10.1186/bcr1681 PubMedCrossRefGoogle Scholar
  55. 55.
    Janicke F, Prechtl A, Thomssen C, Harbeck N, Meisner C, Untch M et al (2001) Randomized adjuvant chemotherapy trial in high-risk, lymph nodenegative breast cancer patients identified by urokinase-type plasminogen activator and plasminogen activator inhibitor type 1. J Natl Cancer Inst 93:913–920. doi:10.1093/jnci/93.12.913 PubMedCrossRefGoogle Scholar
  56. 56.
    Look M, van Putten W, Duffy M, Harbeck N, Christensen IJ, Thomssen C et al (2003) Pooled analysis of prognostic impact of uPA and PAI-1 in breast cancer patients. Thromb Haemost 90:538–548PubMedGoogle Scholar
  57. 57.
    Zemzoum I, Kates RE, Ross JS, Dettmar P, Dutta M, Henrichs C et al (2003) Invasion factors uPA/PAI-1 and HER2 status provide independent and complementary information on patient outcome in node-negative breast cancer. J Clin Oncol 21:1022–1028. doi:10.1200/JCO.2003.04.170 PubMedCrossRefGoogle Scholar
  58. 58.
    Cady B (1997) New era in breast cancer. Impact of screening on disease presentation. Surg Oncol Clin N Am 6:195–202PubMedGoogle Scholar
  59. 59.
    Han B, Nakamura M, Mori I, Nakamura Y, Kakudo K (2005) Urokinase type plasminogen activator system and breast cancer. Oncol Rep 14:105–112 ReviewPubMedGoogle Scholar
  60. 60.
    Leissner P, Verjat T, Bachelot T, Paye M, Krause A, Puisieux A et al (2006) Prognostic significance of urokinase plasminogen activator and plasminogen activator inhibitor-1 mRNA expression in lymph node- and hormone receptor-positive breast cancer. BMC Cancer 6:216. doi:10.1186/1471-2407-6-216 PubMedCrossRefGoogle Scholar
  61. 61.
    Urban P, Vuaroqueaux V, Labuhn M, Delorenzi M, Wirapati P, Wight E et al (2006) Increased expression of urokinase-type plasminogen activator mRNA determines adverse prognosis in ErbB2-positive primary breast cancer. J Clin Oncol 24(26):4245–4253. doi:10.1200/JCO.2005.05.1912 PubMedCrossRefGoogle Scholar
  62. 62.
    Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al (2000) Molecular protraits of human breast tumours. Nature 406:747–752. doi:10.1038/35021093 PubMedCrossRefGoogle Scholar
  63. 63.
    Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874. doi:10.1073/pnas.191367098 PubMedCrossRefGoogle Scholar
  64. 64.
    Fan C, Oh DS, Wessels L, Weigelt B, Nuyten DS, Nobel AB et al (2006) Concordance among gene-expression-based predictors for breast cancer. N Engl J Med 355(6):560–569. doi:10.1056/NEJMoa052933 PubMedCrossRefGoogle Scholar
  65. 65.
    Farrow SN, Brown R (1996) New members of the Bcl-2 family and their protein partners. Curr Opin Genet Dev 6:45–49. doi:10.1016/S0959-437X(96)90009-X PubMedCrossRefGoogle Scholar
  66. 66.
    Yang E, Korsmeyer SJ (1996) Molecular thanatopsis: a discourse on the Bcl-2 family and cell death. Blood 88:386–401PubMedGoogle Scholar
  67. 67.
    Minn AJ, Boise LH, Thompson CB (1996) Bcl-xS antagonizes the protective effects of Bcl-xL. J Biol Chem 271:6306–6312. doi:10.1074/jbc.271.11.6306 PubMedCrossRefGoogle Scholar
  68. 68.
    Miyashita T, Kitada S, Krajewski S, Horne WA, Delia D, Reed JC (1995) Overexpression of Bcl-2 protein increases the half-life of p21 (Bax). J Biol Chem 270:26049–26052. doi:10.1074/jbc.270.44.26049 PubMedCrossRefGoogle Scholar
  69. 69.
    Doglioni C, Dei Tos AP, Laurino L, Chiarelli C, Barbareschi M et al (1994) The prevalence of Bcl-2 immunoreactivity in breast carcinomas and its clinicopathological correlations, with particular reference to estrogen receptor status. Virchows Arch 424:47–51. doi:10.1007/BF00197392 PubMedCrossRefGoogle Scholar
  70. 70.
    Krajewski S, Krajewska M, Shabaik A, Miyashita T, Wang HG, Reed JC (1994) Immunohistochemical determination of in vivo distribution of Bax, a dominant inhibitor of Bcl-2. Am J Pathol 145:1323–1336PubMedGoogle Scholar
  71. 71.
    Krajewski S, Blomqvist C, Franssila K, Krajewska M, Wasenius VM, Niskanen E et al (1995) Reduced expression of the proapoptotic gene BAX is associated with poor response rates to combined chemotherapy and shortened survival in women with metastatic breast adenocarcinoma. Cancer Res 55:4471–4478PubMedGoogle Scholar
  72. 72.
    Barbareschi M, Caffo O, Veronese S, Leek RD, Fina P, Fox S et al (1996) Bcl-2 and p53 expression in node-negative breast carcinoma: a study with long-term follow-up. Hum Pathol 27:1149–1155. doi:10.1016/S0046-8177(96)90307-X PubMedCrossRefGoogle Scholar
  73. 73.
    Bargou RC, Dainel PT, Mapara MY, Bommert K, Wagener C, Killinich B et al (1995) Expression of the bcl-2 gene family in normal and malignant breast tissue: low bax-alpha expression in tumor cells correlates with resistance towards apoptosis. Int J Cancer 60:854–859. doi:10.1002/ijc.2910600622 PubMedCrossRefGoogle Scholar
  74. 74.
    Kapucuoglu N, Losi L, Eusebi V (1997) Immunohistochemical localization of Bcl-2 and Bax proteins in in situ and invasive breast carcinomas. Virchows Arch 430:17–22. doi:10.1007/BF01008011 PubMedCrossRefGoogle Scholar
  75. 75.
    Sierra A, Castellsagué X, Coll T, Mañas S, Escobedo A, Moreno A et al (1998) Expression of death-related genes and their relationship to loss of apoptosis in T1 ductal breast carcinomas. Int J Cancer 79:103–110. doi:10.1002/(SICI)1097-0215(19980417)79:2<103::AID-IJC1>3.0.CO;2-XPubMedCrossRefGoogle Scholar
  76. 76.
    Veronese S, Mauri FA, Caffo O, Scaioli M, Aldovini D, Perrone G et al (1998) Bax immunohistochemical expression in breast carcinoma: a study with long term follow-up. Int J Cancer 79:13–18. doi:10.1002/(SICI)1097-0215(19980220)79:1<13::AID-IJC3>3.0.CO;2-ZPubMedCrossRefGoogle Scholar
  77. 77.
    van Slooten HJ, van de Vijver MJ, van de Velde CJ, van Dierendonck JH (1998) Loss of Bcl-2 in invasive breast cancer is associated with high rates of cell death, but also with increased proliferation activity. Br J Cancer 77:789–796PubMedGoogle Scholar
  78. 78.
    de Jong JS, van Diest PJ, Baak JPA (2000) Number of apoptotic cells as a prognostic marker in invasive breast cancer. Br J Cancer 82:368–373. doi:10.1054/bjoc.1999.0928 PubMedCrossRefGoogle Scholar
  79. 79.
    Gasparini G (1996) Clinical significance of the determination of angiogenesis in human breast cancer: update of the biological background and overview of the Vincenza studies. Eur J Cancer 32A:2485–2493. doi:10.1016/S0959-8049(96)00376-0 PubMedCrossRefGoogle Scholar
  80. 80.
    Vermeulen PB, Gasparini G, Fox SB, Toi M, Martin L, McCulloch P et al (1996) Quantification of angiogenesis in solid human tumors: an international consensus on the methodology and criteria of evaluation. Eur J Cancer 32A:2472–2484Google Scholar
  81. 81.
    Weidner N, Semple JP, Welch WR, Folkman J (1991) Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N Engl J Med 324:1–8PubMedGoogle Scholar
  82. 82.
    de Jong JS, van Diest PJ, Baak JPA (2000) Hot spot microvessel density and the mitotic activity index are strong additional prognostic indicators in invasive breast cancer. Histopathology 36:306–312. doi:10.1046/j.1365-2559.2000.00850.x PubMedCrossRefGoogle Scholar
  83. 83.
    Stefansson IM, Salvesen HB, Akslen LA (2006) Vascular proliferation is important for clinical progress of endometrial cancer. Cancer Res 66(6):3303–3309. doi:10.1158/0008-5472.CAN-05-1163 PubMedCrossRefGoogle Scholar
  84. 84.
    Papadopoulos I, Giatromanolaki A, Koukourakis MI, Sivridis E (2004) Tumour angiogenic activity and vascular survival ability in bladder carcinoma. J Clin Pathol 57(3):250–255. doi:10.1136/jcp. 2003.012005 PubMedCrossRefGoogle Scholar
  85. 85.
    Goldhirsch A, Glick JH, Gelber RD, Coates AS, Thurlimann B, Senn HJ (2005) Meeting highlights: international expert consensus on the primary therapy of early breast cancer 2005. Ann Oncol 16:1569–1583. doi:10.1093/annonc/mdi326 PubMedCrossRefGoogle Scholar
  86. 86.
    Marinho V, Metze K, Sanches F, Rocha G, Gobbi H (2008) Lymph vascular invasion in invasive mammary carcinomas identified by the endothelial lymphatic marker D2-40 is associated with other indicators of poor prognosis. BMC Cancer 8:64. doi:10.1186/1471-2407-8-64 PubMedCrossRefGoogle Scholar
  87. 87.
    Søiland H, Skaland I, Van Diermen B, Janssen E, Körner H, Varhaug JE et al (2007) Androgen receptor determination in breast cancer: a comparison of the dextran-coated charcoal method and quantitative immunohistochemical analysis. AIMM (Sep):19 (accepted for publication)Google Scholar
  88. 88.
    Rabban JT, Chen Y (2008) D2-40 expression by breast myoepithelium: potential pitfalls in distinguishing intralymphatic carcinoma from in situ carcinoma. Hum Pathol 39:175–183. doi:10.1016/j.humpath.2007.06.018 PubMedCrossRefGoogle Scholar
  89. 89.
    Reis-Filho JS, Simpson PT, Gale T, Lakhani SR (2005) The molecular genetics of breast cancer: the contribution of comparative genomic hybridization. Pathol Res Pract 201(11):713–725. doi:10.1016/j.prp. 2005.05.013 PubMedCrossRefGoogle Scholar
  90. 90.
    Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F et al (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumours. Science 258:818–821. doi:10.1126/science.1359641 PubMedCrossRefGoogle Scholar
  91. 91.
    Weiss MM, Hermsen MA, Meijer GA, van Grieken NC, Baak JP, Kuipers EJ et al (1999) Comparative genomic hybridisation. Mol Pathol 52(5):243–251PubMedCrossRefGoogle Scholar
  92. 92.
    Janssen EA, Baak JP, Guervós MA, van Diest PJ, Jiwa M, Hermsen MA (2003) In lymph node-negative invasive breast carcinomas, specific chromosomal aberrations are strongly associated with high mitotic activity and predict outcome more accurately than grade, tumour diameter, and oestrogen receptor. J Pathol 201(4):555–561. doi:10.1002/path.1475 PubMedCrossRefGoogle Scholar
  93. 93.
    Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, Jazaeri A et al (2003) Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci USA 100(18):10393–10398. doi:10.1073/pnas.1732912100 PubMedCrossRefGoogle Scholar
  94. 94.
    Bertucci F, Orsetti B, Nègre V, Finetti P, Rougé C, Ahomadegbe JC et al (2008) Lobular and ductal carcinomas of the breast have distinct genomic and expression profiles. Oncogene. [Epub ahead of print]Google Scholar
  95. 95.
    Melchor L, Honrado E, García MJ, Alvarez S, Palacios J, Osorio A et al (2008) Distinct genomic aberration patterns are found in familial breast cancer associated with different immunohistochemical subtypes. Oncogene 27(22):3165–3175. doi:10.1038/sj.onc.1210975 PubMedCrossRefGoogle Scholar
  96. 96.
    van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009. doi:10.1056/NEJMoa021967 PubMedCrossRefGoogle Scholar
  97. 97.
    Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365(9460):671–679PubMedGoogle Scholar
  98. 98.
    Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351:2817–2826. doi:10.1056/NEJMoa041588 PubMedCrossRefGoogle Scholar
  99. 99.
    Ma XJ, Wang Z, Ryan PD, Isakoff SJ, Barmettler A, Fuller A et al (2004) A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 5(6):607–616. doi:10.1016/j.ccr.2004.05.015 PubMedCrossRefGoogle Scholar
  100. 100.
    Buyse M, Loi S, van’t Veer L, Viale G, Delorenzi M, Glas AM et al (2006) Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Nat Can Inst 98:1183–1192CrossRefGoogle Scholar
  101. 101.
    Goncalves A, Esterni B, Bertucci F, Sauvan R, Chabannon C, Cubizolles M et al (2006) Postoperative serum proteomic profiles may predict metastatic relapse in high-risk primary breast cancer patients receiving adjuvant chemotherapy. Oncogene 25:981–989. doi:10.1038/sj.onc.1209131 PubMedCrossRefGoogle Scholar
  102. 102.
    Ricolleau G, Lode Charbonnel C, Loussouarn D, Joalland MP, Bogumil R et al (2006) Surface-enhanced laser desorption/ionization time of flight mass spectrometry protein profiling identifies ubiquitin and ferritin light chain as prognostic biomarkers in node-negative breast cancer tumors. Proteomics 6:1963–1975PubMedCrossRefGoogle Scholar
  103. 103.
    Jacquemier J, Ginestier C, Rougemont J, Bardou VJ, Charafe-Jauffret E, Geneix J et al (2005) Protein expression profiling identifies subclasses of breast cancer and predicts prognosis. Cancer Res 65:767–779PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Jan P. A. Baak
    • 1
    • 2
    • 3
  • Einar Gudlaugsson
    • 1
    • 2
  • Ivar Skaland
    • 1
    • 2
  • Lydia Hui Ru Guo
    • 4
  • Jan Klos
    • 1
  • Tone Hoel Lende
    • 5
  • Håvard Søiland
    • 5
  • Emiel A. M. Janssen
    • 1
  • Axel zur Hausen
    • 6
  1. 1.Department of PathologyStavanger University HospitalStavangerNorway
  2. 2.The Gade InstituteUniversity of BergenBergenNorway
  3. 3.Free UniversityAmsterdamThe Netherlands
  4. 4.Department of Oncology-3Longhua HospitalShanghaiPeople’s Republic of China
  5. 5.Department of Endocrine SurgeryStavanger University HospitalStavangerNorway
  6. 6.Institute of PathologyUniversity Hospital FreiburgFreiburgGermany

Personalised recommendations