Breast Cancer Research and Treatment

, Volume 116, Issue 1, pp 195–200 | Cite as

Promoter methylation patterns of ATM, ATR, BRCA1, BRCA2 and P53 as putative cancer risk modifiers in Jewish BRCA1/BRCA2 mutation carriers

  • Tair Kontorovich
  • Yoram Cohen
  • Uri Nir
  • Eitan Friedman
Epidemiology

Abstract

BRCA1/BRCA2 germline mutations substantially increase breast and ovarian cancer risk, yet penetrance is incomplete. We hypothesized that germline epigenetic gene silencing may affect mutant BRCA1/2 penetrance. To test this notion, we determined the methylation status, using methylation-specific quantitative PCR of the promoter in putative modifier genes: BRCA1, BRCA2, ATM, ATR and P53 in Jewish BRCA1/BRCA2 mutation carriers with (n = 41) or without (n = 48) breast cancer, in sporadic breast cancer (n = 52), and healthy controls (n = 89). Promoter hypermethylation was detected only in the BRCA1 promotor in 5.6–7.3% in each of the four subsets of participants, regardless of health and BRCA1/2 status.Germline promoter hypermethylation in the BRCA1 gene can be detected in about 5% of the female Israeli Jewish population, regardless of the BRCA1/2 status. The significance of this observation is yet to be determined.

Keywords

Methylation BRCA1 BRCA2 Modifier genes Cancer susceptibility Epigenetic mechanisms 

References

  1. 1.
    Wacholder S, Struewing JP, Hartge P, Greene MH, Tucker MA (2004) Breast cancer risks for BRCA1/2 carriers. Science 306:2187–2191PubMedGoogle Scholar
  2. 2.
    Robles-Diaz L, Goldfrank JD, Kauff ND, Robson M, Offit K (2004) Hereditary ovarian cancer in Ashkenazi Jews. Fam Cancer 3:259–264PubMedCrossRefGoogle Scholar
  3. 3.
    Easton DF, Ford D, Bishop DT (1995) Breast and ovarian cancer incidence in BRCA1 mutation carriers Breast Cancer Linkage Consortium. Am J Hum Genet 56:265–271PubMedGoogle Scholar
  4. 4.
    Narod SA, Goldgar D, Cannon-Albright L, Weber BL, Moslehi R, Ives E, Lenoir G, Lynch H (1995) Risk modifiers in carriers of BRCA1 mutations. Int J Cancer 64:394–398PubMedCrossRefGoogle Scholar
  5. 5.
    Ford D, Easton DF, Stratton M, Narod S et al (1998) Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. Am J Hum Genet 62:676–689PubMedCrossRefGoogle Scholar
  6. 6.
    Wylie B, Melissa AA (2002) Genetic risk in context: calculating the penetrance of BRCA1 and BRCA2 mutations. J Natl Cancer Inst 94:1185–1187Google Scholar
  7. 7.
    Begg CB (2002) On the use of familial aggregation in population-based case probands for calculating penentrance. J Natl Cancer Inst 94:1221–1226PubMedGoogle Scholar
  8. 8.
    Kenneth O (2006) BRCA mutation frequency and penetrance: new data, old debate. J Natl Cancer Inst 98:1675–1677CrossRefGoogle Scholar
  9. 9.
    Narod SA (2006) Modifiers of risk of hereditary breast cancer. Oncogene 25:832–5836CrossRefGoogle Scholar
  10. 10.
    Levy-Lahad E, Friedman E (2007) Cancer risks among BRCA1 and BRCA2 mutation carriers. Br J Cancer 96:11–15PubMedCrossRefGoogle Scholar
  11. 11.
    Antoniou AC, Sinilnikova OM, Simard J, Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) (2007) RAD51 135G→C modifies breast cancer risk among BRCA2 mutation carriers: results from a combined analysis of 19 studies. Am J Hum Genet 81:1186–1200PubMedCrossRefGoogle Scholar
  12. 12.
    Baylin SB, Chen WY (2005) Aberrant gene silencing in tumor progression: implications for control of cancer. Cold Spring Harb Symp Quant Biol 70:427–433PubMedCrossRefGoogle Scholar
  13. 13.
    Bastian PJ, Yegnasubramanian S, Palapattu G, Rogers C, Lin X, Marzo AD, Nelson W (2004) Molecular biomarker in prostate cancer: the role of CpG island hypermethylation. Eur Urol 46:698–708PubMedCrossRefGoogle Scholar
  14. 14.
    Feinberg AP (2001) Cancer epigenetics takes center stage. Proc Natl Acad Sci U S A 98:392–394PubMedCrossRefGoogle Scholar
  15. 15.
    Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG (2001) Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet 10:687–692PubMedCrossRefGoogle Scholar
  16. 16.
    Cross SH, Bird AP (1995) CpG islands and genes. Curr Opin Genet Dev 5:309–314PubMedCrossRefGoogle Scholar
  17. 17.
    Attwood JT, Yung RL, Richardson BC (2002) DNA methylation and the regulation of gene transcription. Cell Mol Life Sci 59:241–257PubMedCrossRefGoogle Scholar
  18. 18.
    Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428PubMedCrossRefGoogle Scholar
  19. 19.
    Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349:2042–2054PubMedCrossRefGoogle Scholar
  20. 20.
    Bird A, Taggart M, Frommer M, Miller OJ, Macleod D (1985) A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell 40:91–99PubMedCrossRefGoogle Scholar
  21. 21.
    Dobrovic A, Simpfendorfer D (1997) Methylation of the BRCA1 gene in sporadic breast cancer. Cancer Res 57:3347–3350PubMedGoogle Scholar
  22. 22.
    Suter CM, Martin DI, Ward RL (2004) Germline epimutation of MLH1 in individuals with multiple cancers. Nat Genet 36:497–501PubMedCrossRefGoogle Scholar
  23. 23.
    Chan TL, Yuen ST, Kong CK, Chan YW, Chan AS, Ng WF, Tsui WY, Lo MW, Tam WY, Li WY, Leung SY (2006) Heritable germline epimutation of MSH2 in a family with hereditary nonpolyposis colorectal cancer. Nat Genet 38:1178–1183PubMedCrossRefGoogle Scholar
  24. 24.
    Weisenberger DJ, Siegmund DK, Campan M et al (2006) CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 38:787–793PubMedCrossRefGoogle Scholar
  25. 25.
    Chan KY, Ozçelik H, Cheung AN, Ngan HY, Khoo US (2002) Epigenetic Factors Controlling the BRCA1 and BRCA2 Genes in Sporadic Ovarian Cancer. Cancer Res 62:4151–4156PubMedGoogle Scholar
  26. 26.
    Kang JH, Kim SJ, Noh D, Park IA, Choe KJ, Yoo OJ, Kang H (2001) Methylation in the p53 promoter is a supplementary route to breast carcinogenesis: correlation between CpG methylation in the p53 promoter and the mutation of the p53 gene in the progression from ductal carcinoma in situ to invasive ductal carcinoma. Lab Invest 81:573–579PubMedGoogle Scholar
  27. 27.
    Treilleux I, Chapot B, Goddard S, Pisani P, Ange`le S, Hall J (2007) The molecular causes of low ATM protein expression in breast carcinoma; promoter methylation and levels of the catalytic subunit of DNA-dependent protein kinase. Histopathology 51:63–69PubMedCrossRefGoogle Scholar
  28. 28.
    Wei M, Grushko TA, Dignam J, Hagos F, Nanda R, Sveen L, Xu J, Fackenthal J, Tretiakova M, Das S, Olopade OI (2005) BRCA1 Promoter Methylation in Sporadic Breast Cancer Is Associated with Reduced BRCA1 Copy Number and Chromosome 17 Aneusomy. Cancer Res 65:10692–10699PubMedCrossRefGoogle Scholar
  29. 29.
    Snell C, Krypuy M, Wong EM, kConFab investigators, Loughrey MB, Dobrovic A (2008) BRCA1 promoter methylation in peripheral blood DNA of mutation negative familial breast cancer patients with a BRCA1 tumour phenotype. Breast Cancer Res 10:R12PubMedCrossRefGoogle Scholar
  30. 30.
    Chen Y, Amanda E, McLennan TJ, Fridlyand J, Crawford B, Costello JF, John LZ (2006) Lack of germ-line promoter methylation in BRCA1-negative families with familial breast cancer. Genet Test 10:281–284PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Tair Kontorovich
    • 1
    • 2
  • Yoram Cohen
    • 3
  • Uri Nir
    • 2
  • Eitan Friedman
    • 1
    • 4
  1. 1.The Susanne Levy Gertner Oncogenetics Unit, The Danek Gertner Institute of Human GeneticsThe Chaim Sheba medical CenterTel-HashomerIsrael
  2. 2.The Mina and Everard Goodman Faculty of Life SciencesBar-Ilan UniversityRamat GanIsrael
  3. 3.The Gyneco-Oncology DepartmentThe Chaim Sheba medical CenterTel-HashomerIsrael
  4. 4.The Sackler School of MedicineTel-Aviv UniversityRamat AvivIsrael

Personalised recommendations