Breast Cancer Research and Treatment

, Volume 115, Issue 1, pp 13–27 | Cite as

Role of melatonin in the epigenetic regulation of breast cancer

  • Ahmet KorkmazEmail author
  • Emilio J. Sanchez-Barcelo
  • Dun-Xian Tan
  • Russel J. Reiter


The oncostatic properties of melatonin as they directly or indirectly involve epigenetic mechanisms of cancer are reviewed with a special focus on breast cancer. Five lines of evidence suggest that melatonin works via epigenetic processes: (1) melatonin influences transcriptional activity of nuclear receptors (ERα, GR and RAR) involved in the regulation of breast cancer cell growth; (2) melatonin down-regulates the expression of genes responsible for the local synthesis or activation of estrogens including aromatase, an effect which may be mediated by methylation of the CYP19 gene or deacetylation of CYP19 histones; (3) melatonin inhibits telomerase activity and expression induced by either natural estrogens or xenoestrogens; (4) melatonin modulates the cell cycle through the inhibition of cyclin D1 expression; (5) melatonin influences circadian rhythm disturbances dependent on alterations of the light/dark cycle (i.e., light at night) with the subsequent deregulation of PER2 which acts as a tumor suppressor gene.


Melatonin Breast cancer Epigenetic mechanisms Nuclear receptors Aromatase Telomerase Cell cycle Light at night Clock genes 



This work is supported in part by a grant from the Spanish Ministry of Education and Science (SAF2007-62762).


  1. 1.
    Bronner C, Chataigneau T, Schini-Kerth VB, Landry Y (2007) The “Epigenetic Code Replication Machinery”, ECREM: a promising drugable target of the epigenetic cell memory. Curr Med Chem 14:2629–2641. doi: 10.2174/092986707782023244 PubMedGoogle Scholar
  2. 2.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70. doi: 10.1016/S0092-8674(00)81683-9 PubMedGoogle Scholar
  3. 3.
    Ducasse M, Brown MA (2006) Epigenetic aberrations and cancer. Mol Cancer 5:60. doi: 10.1186/1476-4598-5-60 PubMedGoogle Scholar
  4. 4.
    Jiang YH, Bressler J, Beaudet AL (2004) Epigenetics and human disease. Annu Rev Genom Hum Genet 5:479–510. doi: 10.1146/annurev.genom.5.061903.180014 Google Scholar
  5. 5.
    McLachlan JA (2001) Environmental signaling: what embryos and evolution teach us about endocrine disrupting chemicals. Endocr Rev 22:319–341. doi: 10.1210/er.22.3.319 PubMedGoogle Scholar
  6. 6.
    Gallou-Kabani C, Junien C (2005) Nutritional epigenomics of metabolic syndrome: new perspective against the epidemic. Diabetes 54:1899–1906. doi: 10.2337/diabetes.54.7.1899 PubMedGoogle Scholar
  7. 7.
    Bombail V, Moggs JG, Orphanides G (2004) Perturbation of epigenetic status by toxicants. Toxicol Lett 149:51–58. doi: 10.1016/j.toxlet.2004.01.003 PubMedGoogle Scholar
  8. 8.
    McLachlan JA, Burow M, Chiang TC, Li SF (2001) Gene imprinting in developmental toxicology: a possible interface between physiology and pathology. Toxicol Lett 120:161–164. doi: 10.1016/S0378-4274(01)00295-8 PubMedGoogle Scholar
  9. 9.
    Giovanucci E, Stampfer MJ, Colditz GA et al (1993) Folate, methionine, and alcohol intake and risk of colorectal adenoma. J Natl Cancer Inst 85:875–884. doi: 10.1093/jnci/85.11.875 Google Scholar
  10. 10.
    Janisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33:245–254. doi: 10.1038/ng1089 Google Scholar
  11. 11.
    Dizik M, Christman JK, Wainfan E (1991) Alterations in expression and methylation of specific genes in livers of rats fed a cancer promoting methyl-deficient diet. Carcinogenesis 12:1307–1312. doi: 10.1093/carcin/12.7.1307 PubMedGoogle Scholar
  12. 12.
    Widschwendter M, Jones PA (2002) DNA methylation and breast carcinogenesis. Oncogene 21:5462–5482. doi: 10.1038/sj.onc.1205606 PubMedGoogle Scholar
  13. 13.
    Stearns V, Zhou Q, Davidson NE (2007) Epigenetic regulation as a new target for breast cancer therapy. Cancer Invest 25:659–665. doi: 10.1080/07357900701719234 PubMedGoogle Scholar
  14. 14.
    Esteller M (2007) Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum Mol Genet; 16 Spec No 1:R50–59Google Scholar
  15. 15.
    Das PM, Singal R (2004) DNA methylation and cancer. J Clin Oncol 22:4632–4642. doi: 10.1200/JCO.2004.07.151 PubMedGoogle Scholar
  16. 16.
    Garinis GA, Patrinos GP, Spanakis NE, Menounos PG (2002) DNA hypermethylation: when tumour suppressor genes go silent. Hum Genet 111:115–127. doi: 10.1007/s00439-002-0783-6 PubMedGoogle Scholar
  17. 17.
    Brueckner B, Kuck D, Lyko F (2007) DNA methyltransferase inhibitors for cancer therapy. Cancer J 13:17–22. doi: 10.1097/PPO.0b013e31803c7245 PubMedGoogle Scholar
  18. 18.
    Peedicayil J (2006) Epigenetic therapy—a new development in pharmacology. Indian J Med Res 123:17–24PubMedGoogle Scholar
  19. 19.
    Bestor TH (2000) The DNA methyltransferases of mammals. Hum Mol Genet 9:2395–2402. doi: 10.1093/hmg/9.16.2395 PubMedGoogle Scholar
  20. 20.
    Yang XJ, Seto E (2007) HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene 26:5310–2318. doi: 10.1038/sj.onc.1210599 PubMedGoogle Scholar
  21. 21.
    Miremadi A, Oestergaard MZ, Pharoah PD, Caldas C (2007) Cancer genetics of epigenetic genes. Hum Mol Genet 16 Spec No 1: R28–49Google Scholar
  22. 22.
    Esteller M (2000) Epigenetic lesions causing genetic lesions in human cancer: promoter hypermethylation of DNA repair genes. Eur J Cancer 36:2294–2300. doi: 10.1016/S0959-8049(00)00303-8 PubMedGoogle Scholar
  23. 23.
    Jacinto FV, Esteller M (2007) Mutator pathways unleashed by epigenetic silencing in human cancer. Mutagenesis 22:247–253. doi: 10.1093/mutage/gem009 PubMedGoogle Scholar
  24. 24.
    Fraga MF, Ballestar E, Villar-Garea et al (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37:391–400. doi: 10.1038/ng1531
  25. 25.
    Esteller M (2008) Epigenetics in cancer. N Engl J Med 358:1148–1159. doi: 10.1056/NEJMra072067 PubMedGoogle Scholar
  26. 26.
    Giacinti L, Claudio PP, Lopez M, Giordano A (2006) Epigenetic information and estrogen receptor alpha expression in breast cancer. Oncologist 11:1–8. doi: 10.1634/theoncologist.11-1-1 PubMedGoogle Scholar
  27. 27.
    Szyf M, Pakneshan P, Rabbani SA (2004) DNA methylation and breast cancer. Biochem Pharmacol 68:1187–1197. doi: 10.1016/j.bcp. 2004.04.030 PubMedGoogle Scholar
  28. 28.
    Ehrlich M (2002) DNA methylation in cancer: too much, but also too little. Oncogene 21:5400–5413. doi: 10.1038/sj.onc.1205651 PubMedGoogle Scholar
  29. 29.
    Popov VM, Wang C, Shirley LA et al (2007) The functional significance of nuclear receptor acetylation. Steroids 72:221–230. doi: 10.1016/j.steroids.2006.12.001 PubMedGoogle Scholar
  30. 30.
    Lerner AB, Case JD, Takahashi Y (1960) Isolation of melatonin and 5-methoxyindole-3-acetic acid from bovine pineal glands. J Biol Chem 235:1992–1997PubMedGoogle Scholar
  31. 31.
    Cos S, Sanchez-Barcelo EJ (2000) Melatonin and mammary pathological growth. Front Neuroendocrinol 21:133–170. doi: 10.1006/frne.1999.0194 PubMedGoogle Scholar
  32. 32.
    Sanchez-Barcelo EJ, Cos S, Mediavilla D, Martinez-Campa C, Gonzalez A, Alonso-Gonzalez C (2005) Melatonin-estrogen interactions in breast cancer. J Pineal Res 38:217–222. doi: 10.1111/j.1600-079X.2004.00207.x PubMedGoogle Scholar
  33. 33.
    Cohen M, Lippman M, Chabner B (1978) Role of pineal gland in the aetiology and treatment of breast cancer. Lancet 2:814–816. doi: 1016/S0140-6736(78)9259-6 PubMedGoogle Scholar
  34. 34.
    Tamarkin L, Danforth D, Lichter A et al (1982) Decreased nocturnal plasma melatonin peak in patients with estrogen receptor positive breast cancer. Science 216:1003–1005. doi: 10.1126/science.7079745 PubMedGoogle Scholar
  35. 35.
    Coleman MP, Reiter RJ (1992) Breast cancer, blindness and melatonin. Eur J Cancer 28:501–503. doi: 10.1016/S0959-8049(05)80087-5 PubMedGoogle Scholar
  36. 36.
    Kliukiene J, Tynes T, Andersen A (2001) Risk of breast cancer among Norwegian women with visual impairment. Br J Cancer 84:397–399. doi: 10.1054/bjoc.2000.1617 PubMedGoogle Scholar
  37. 37.
    Verkasalo PK, Pukkala E, Stevens RG, Ojamo M, Rudanko SL (1999) Inverse association between breast cancer incidence and degree of visual impairment in Finland. Br J Cancer 80:1459–1460. doi: 10.1038/sj.bjc.6690544 PubMedGoogle Scholar
  38. 38.
    Schernhammer ES, Hankinson SE (2005) Urinary melatonin levels and breast cancer risk. J Natl Cancer Inst 97:1084–1087PubMedCrossRefGoogle Scholar
  39. 39.
    Kheifets LI, Matkin CC (1999) Industrialization, electromagnetic fields, and breast cancer risk. Environ Health Perspect 107(Suppl 1):145–154. doi: 10.2307/3434479 PubMedGoogle Scholar
  40. 40.
    Brainard GC, Kavet R, Kheifets LI (1999) The relationship between electromagnetic field and light exposures to melatonin and breast cancer risk: a review of the relevant literature. J Pineal Res 26:65–100. doi: 10.1111/j.1600-079X.1999.tb00568.x PubMedGoogle Scholar
  41. 41.
    Cos S, Mediavilla D, Martinez-Campa C, Gonzalez A, Alonso-Gonzalez C, Sanchez-Barcelo EJ (2006) Exposure to light-at-night increases the growth of DMBA- induced mammary adenocarcinomas in rats. Cancer Lett 235:266–271. doi: 10.1016/j.canlet.2005.04.025 PubMedGoogle Scholar
  42. 42.
    Blask DE, Dauchy RT, Sauer LA, Krause JA, Brainard GC (2003) Growth and fatty acid metabolism of human breast cancer (MCF-7) xenografts in nude rats: impact of constant light-induced nocturnal melatonin suppression. Breast Cancer Res Treat 79:313–320. doi: 10.1023/A:1024030518065 PubMedGoogle Scholar
  43. 43.
    Wilson ST, Blask DE, Lemus-Wilson AM (1992) Melatonin augments the sensitivity of MCF-7 human breast cancer cells to tamoxifen in vitro. J Clin Endocrinol Metab 75:669–670. doi: 10.1210/jc.75.2.669 PubMedGoogle Scholar
  44. 44.
    Blask DE, Wilson ST, Zalatan F (1997) Physiological melatonin inhibition of human breast cancer cell growth in vitro: evidence for a glutathione-mediated pathway. Cancer Res 57:1909–1914PubMedGoogle Scholar
  45. 45.
    Mediavilla MD, Güezmez A, Ramos S, Kothari L, Garijo F, Sánchez Barceló EJ (1997) Effects of melatonin on mammary gland lesions in transgenic mice overexpressing N-ras proto-oncogene. J Pineal Res 22:86–94. doi: 10.1111/j.1600-079X.1997.tb00308.x PubMedGoogle Scholar
  46. 46.
    Cos S, Fernandez R, Güezmes A, Sanchez-Barcelo EJ (1998) Influence of melatonin on invasive and metastatic properties of MCF-7 human breast cancer cells. Cancer Res 58:4383–4390PubMedGoogle Scholar
  47. 47.
    Mangelsdorf DJ, Thummel C, Beato M et al (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839. doi: 10.1016/0092-8674(95)90199-X PubMedGoogle Scholar
  48. 48.
    Glass CK, Rosenfeld MG (2000) The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14:121–141PubMedGoogle Scholar
  49. 49.
    Lu NZ, Wardell SE, Burnstein KL et al (2006) International Union of Pharmacology. LXV. The pharmacology and classification of the nuclear receptor superfamily: glucocorticoid, mineralocorticoid, progesterone, and androgen receptors. Pharmacol Rev 58:782–797. doi: 10.1124/pr.58.4.9 PubMedGoogle Scholar
  50. 50.
    Benoit G, Cooney A, Giguere V et al (2006) International Union of Pharmacology LXVI. Orphan nuclear receptors. Pharmacol Rev 58:798–836. doi: 10.1124/pr.58.4.10 PubMedGoogle Scholar
  51. 51.
    Lonard DM, Lanz RB, O’Malley BW (2007) Nuclear receptor coregulators and human disease. Endocr Rev 28:575–587. doi: 10.1210/er.2007-0012 PubMedGoogle Scholar
  52. 52.
    Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080. doi: 10.1126/science.1063127 PubMedGoogle Scholar
  53. 53.
    Chen J, Kinyamu HK, Archer TK (2006) Changes in attitude, changes in latitude: nuclear receptors remodeling chromatin to regulate transcription. Mol Endocrinol 20:1–13. doi: 10.1210/me.2005-0192 PubMedGoogle Scholar
  54. 54.
    Lonard DM, O’Malley BW (2007) Nuclear receptor coregulators: judges, juries, and executioners of cellular regulation. Mol Cell 27:691–700. doi: 10.1016/j.molcel.2007.08.012 PubMedGoogle Scholar
  55. 55.
    Becker-Andre M, Wiesenberg I, Schaeren-Wiemers N et al (1994) Pineal gland hormone melatonin binds and activates an orphan of the nuclear receptor superfamily. J Biol Chem 269:28531–28534PubMedGoogle Scholar
  56. 56.
    Park HT, Baek SY, Kim BS, Kim JB, Kim JJ (1996) Developmental expression of ‘RZR beta, a putative nuclear-melatonin receptor’ mRNA in the suprachiasmatic nucleus of the rat. Neurosci Lett 217:17–20. doi: 10.1016/S0304-3940(96)13060-3 PubMedGoogle Scholar
  57. 57.
    Park HT, Kim YJ, Yoon S, Kim JB, Kim JJ (1997) Distributional characteristics of the mRNA for retinoid Z receptor beta (RZR beta), a putative nuclear melatonin receptor, in the rat brain and spinal cord. Brain Res 747:332–337. doi: 10.1016/S0006-8993(96)01320-0 PubMedGoogle Scholar
  58. 58.
    Agez L, Laurent V, Pevet P, Masson-Pevet M, Gauer F (2007) Melatonin affects nuclear orphan receptors mRNA in the rat suprachiasmatic nuclei. Neuroscience 144:522–530. doi: 10.1016/j.neuroscience.2006.09.030 PubMedGoogle Scholar
  59. 59.
    Naji L, Carrillo-Vico A, Guerrero JM, Calvo JR (2004) Expression of membrane and nuclear melatonin receptors in mouse peripheral organs. Life Sci 74:2227–2236. doi: 10.1016/j.lfs.2003.08.046 PubMedGoogle Scholar
  60. 60.
    Baler R, Coon S, Klein DC (1996) Orphan nuclear receptor RZRbeta: cyclic AMP regulates expression in the pineal gland. Biochem Biophys Res Commun 220:975–978. doi: 10.1006/bbrc.1996.0517 PubMedGoogle Scholar
  61. 61.
    Garcia-Maurino S, Gonzalez-Haba MG, Calvo JR et al (1997) Melatonin enhances IL-2, IL-6, and IFN-gamma production by human circulating CD4+ cells: a possible nuclear receptor-mediated mechanism involving T helper type 1 lymphocytes and monocytes. J Immunol 159:574–581PubMedGoogle Scholar
  62. 62.
    Bordji K, Grillasca JP, Gouze JN et al (2000) Evidence for the presence of peroxisome proliferator-activated receptor (PPAR) alpha and gamma and retinoid Z receptor in cartilage. PPARgamma activation modulates the effects of interleukin-1beta on rat chondrocytes. J Biol Chem 275:12243–12250. doi: 10.1074/jbc.275.16.12243 PubMedGoogle Scholar
  63. 63.
    Smirnov AN (2001) Nuclear melatonin receptors. Biochemistry (Mosc) 66(1):19–26. doi: 10.1023/A:1002821427018 Google Scholar
  64. 64.
    Nolte RT, Wisely GB, Westin S et al (1998) Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature 395:137–143. doi: 10.1038/25931 PubMedGoogle Scholar
  65. 65.
    Horlein AJ, Naar AM, Heinzel T et al (1995) Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377:397–404. doi: 10.1038/377397a0 PubMedGoogle Scholar
  66. 66.
    Chawla A, Lee CH, Barak Y et al (2003) PPARdelta is a very low-density lipoprotein sensor in macrophages. Proc Natl Acad Sci USA 100:1268–1273. doi: 10.1073/pnas.0337331100 PubMedGoogle Scholar
  67. 67.
    Xu L, Glass CK, Rosenfeld MG (1999) Coactivator and corepressor complexes in nuclear receptor function. Curr Opin Genet Dev 9(2):140–147. doi: 10.1016/S0959-437X(99)80021-5 PubMedGoogle Scholar
  68. 68.
    Mukherjee R, Davies PJ, Crombie DL et al (1997) Sensitization of diabetic and obese mice to insulin by retinoid X receptor agonists. Nature 386:407–410. doi: 10.1038/386407a0 PubMedGoogle Scholar
  69. 69.
    Mukherjee R, Jow L, Croston GE, Paterniti JR (1997) Identification, characterization, and tissue distribution of human peroxisome proliferator-activated receptor (PPAR) isoforms PPARgamma2 versus PPARgamma1 and activation with retinoid X receptor agonists and antagonists. J Biol Chem 272:8071–8076. doi: 10.1074/jbc.272.4.2346 PubMedGoogle Scholar
  70. 70.
    McKenna NJ, Lanz RB, O’Malley BW (1999) Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev 20:321–344. doi: 10.1210/er.20.3.321 PubMedGoogle Scholar
  71. 71.
    McKenna NJ, O’Malley BW (2002) Minireview: nuclear receptor coactivators—an update. Endocrinology 143:2461–2465. doi: 10.1210/en.143.7.2461 PubMedGoogle Scholar
  72. 72.
    McKenna NJ, O’Malley BW (2002) Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108:465–474. doi: 10.1016/S0092-8674(02)00641-4 PubMedGoogle Scholar
  73. 73.
    Schneider SM, Offterdinger M, Huber H, Grunt TW (1999) Involvement of nuclear steroid/thyroid/retinoid receptors and of protein kinases in the regulation of growth and of c-erbB and retinoic acid receptor expression in MCF-7 breast cancer cells. Breast Cancer Res Treat 58:171–181. doi: 10.1023/A:1006377006816 PubMedGoogle Scholar
  74. 74.
    Kiefer TL, Lai L, Yuan L, Dong C, Burow ME, Hill SM (2005) Differential regulation of estrogen receptor alpha, glucocorticoid receptor and retinoic acid receptor alpha transcriptional activity by melatonin is mediated via different G proteins. J Pineal Res 38:231–239. doi: 10.1111/j.1600-079X.2004.00198.x PubMedGoogle Scholar
  75. 75.
    Jarrar MH, Baranova A (2007) PPARgamma activation by thiazolidinediones (TZDs) may modulate breast carcinoma outcome: the importance of interplay with TGFbeta signalling. J Cell Mol Med 11:71–87. doi: 10.1111/j.1582-4934.2007.00003.x PubMedGoogle Scholar
  76. 76.
    Crowe DL, Chandraratna RA (2004) A retinoid X receptor (RXR)-selective retinoid reveals that RXR-alpha is potentially a therapeutic target in breast cancer cell lines, and that it potentiates antiproliferative and apoptotic responses to peroxisome proliferator-activated receptor ligands. Breast Cancer Res 6:R546–R555. doi: 10.1186/bcr913 PubMedGoogle Scholar
  77. 77.
    Eck-Enriquez K, Kiefer TL, Spriggs LL, Hill SM (2000) Pathways through which a regimen of melatonin and retinoic acid induces apoptosis in MCF-7 human breast cancer cells. Breast Cancer Res Treat 61:229–239. doi: 10.1023/A:1006442017658 PubMedGoogle Scholar
  78. 78.
    Sharma R, Ottenhof T, Rzeczkowska PA, Niles LP (2008) Epigenetic targets for melatonin: induction of histone H3 hyperacetylation and gene expression in C17.2 neural stem cells. J Pineal Res (Epub ahead of print). doi: 10.1111/j.1600-079X.2008.00587.x
  79. 79.
    Blask DE, Hill SM (1968) Effects of melatonin on cancer: studies on MCF-7 human breast cancer cells in culture. J Neural Transm Suppl 21:433–449Google Scholar
  80. 80.
    Leon-Blanco MM, Guerrero JM, Reiter RJ, Calvo JR, Pozo D (2003) Melatonin inhibits telomerase activity in the MCF-7 tumor cell line both in vivo and in vitro. J Pineal Res 35:204–211. doi: 10.1034/j.1600-079X.2003.00077.x PubMedGoogle Scholar
  81. 81.
    Martinez-Campa C, Alonso-Gonzalez C, Mediavilla MD et al (2006) Melatonin inhibits both ER alpha activation and breast cancer cell proliferation induced by a metalloestrogen, cadmium. J Pineal Res 40:291–296. doi: 10.1111/j.1600-079X.2006.00315.x PubMedGoogle Scholar
  82. 82.
    Martinez-Campa C, Alonso-Gonzalez C, Mediavilla MD, Cos S, Gonzalez A, Sanchez-Barcelo EJ (2008) Melatonin down-regulates hTERT expression induced by either natural estrogens (17β-estradiol) or metalloestrogens (cadmium) in MCF-7 human breast cancer cells. Cancer Lett (Epub ahead of print). doi: 10.1016/j.canlet.2008.04.001
  83. 83.
    Molis TM, Spriggs LL, Jupiter Y, Hill SM (1995) Melatonin modulation of estrogen-regulated proteins, growth factors, and proto-oncogenes in human breast cancer. J Pineal Res 18:93–103. doi: 10.1111/j.1600-079X.1995.tb00146.x PubMedGoogle Scholar
  84. 84.
    Lawson NO, Wee BE, Blask DE, Castles CG, Spriggs LL, Hill SM (1992) Melatonin decreases estrogen receptor expression in the medial preoptic area of inbred (LSH/SsLak) golden hamsters. Biol Reprod 47:1082–1090. doi: 10.1095/biolreprod47.6.1082 PubMedGoogle Scholar
  85. 85.
    Molis TM, Spriggs LL, Hill SM (1994) Modulation of estrogen receptor mRNA expression by melatonin in MCF-7 human breast cancer cells. Mol Endocrinol 8:1681–1690. doi: 10.1210/me.8.12.1681 PubMedGoogle Scholar
  86. 86.
    Rato AG, Pedrero JG, Martinez MA, del Rio B, Lazo PS, Ramos S (1999) Melatonin blocks the activation of estrogen receptor for DNA binding. FASEB J 13:857–868PubMedGoogle Scholar
  87. 87.
    Baldwin WS, Barrett JC (1998) Melatonin: receptor-mediated events that may affect breast and other steroid hormone-dependent cancers. Mol Carcinog 21:149–155. doi:10.1002/(SICI)1098-2744(199803)21:3≤149::AID-MC1≥3.0.CO;2-HGoogle Scholar
  88. 88.
    Yuan L, Collins AR, Dai J, Dubocovich ML, Hill SM (2002) MT(1) melatonin receptor verexpression enhances the growth suppressive effect of melatonin in human breast cancer cells. Mol Cell Endocrinol 192:147–156. doi: 10.1016/S0303-7207(02)00029-1 PubMedGoogle Scholar
  89. 89.
    Jones MP, Melan MA, Witt-Enderby PA (2000) Melatonin decreases cell proliferation and transformation in a melatonin receptor-dependent manner. Cancer Lett 151:133–143. doi: 10.1016/S0304-3835(99)00394-8 PubMedGoogle Scholar
  90. 90.
    Ram PT, Dai J, Yuan L et al (2002) Involvement of the mt1 melatonin receptor in human breast cancer. Cancer Lett 179:141–150. doi: 10.1016/S0304-3835(01)00873-4 PubMedGoogle Scholar
  91. 91.
    Collins A, Yuan L, Kiefer TL, Cheng Q, Lai L, Hill SM (2003) Overexpression of the MT1 melatonin receptor in MCF-7 human breast cancer cells inhibits mammary tumor formation in nude mice. Cancer Lett 189:49–57. doi: 10.1016/S0304-3835(02)00502-5 PubMedGoogle Scholar
  92. 92.
    Dillon DC, Easley SE, Asch BB et al (2002) Differential expression of high-affinity melatonin receptors (MT1) in normal and malignant human breast tissue. Am J Clin Pathol 118:451–458. doi: 10.1309/1T4V-CT1G-UBJP-3EHP PubMedGoogle Scholar
  93. 93.
    Garcia Pedrero JM, Del Rio B, Martínez-Campa C, Muramatsu M, Lazo PS, Ramos S (2002) Calmodulin is a selective modulator of estrogen receptors. Mol Endocrinol 16:947–960. doi: 10.1210/me.16.5.947 PubMedGoogle Scholar
  94. 94.
    Dai J, Inscho EW, Yuan L, Hill SM (2002) Modulation of intracellular calcium and calmodulin by melatonin in MCF-7 human breast cancer cells. J Pineal Res 32(2):112–119. doi: 10.1034/j.1600-079x.2002.1844.x PubMedGoogle Scholar
  95. 95.
    del Río B, García Pedrero JM, Martínez-Campa C, Zuazua P, Lazo PS, Ramos S (2004) Melatonin, an endogenous-specific inhibitor of estrogen receptor alpha via calmodulin. J Biol Chem 279:38294–38302. doi: 10.1074/jbc.M403140200 PubMedGoogle Scholar
  96. 96.
    Macaluso M, Cinti C, Russo G, Russo A, Giordano A (2003) pRb2/p130–E2F4/5- HDAC1-SUV39H1–p300 and pRb2/p130–E2F4/5-HDAC1-SUV39H1-DNMT1 multimolecular complexes mediate the transcription of estrogen receptor-alpha in breast cancer. Oncogene 22:3511–3517. doi: 10.1038/sj.onc.1206578 PubMedGoogle Scholar
  97. 97.
    Martin MB, Angeloni SV, Garcia-Morales P (2004) Regulation of estrogen receptor-alpha expression in MCF-7 cells by taxol. J Endocrinol 180:487–496. doi: 10.1677/joe.0.1800487 PubMedGoogle Scholar
  98. 98.
    Burch JB, Walling M, Rush A et al (2007) Melatonin and estrogen in breast cyst fluids. Breast Cancer Res Treat 103:331–341. doi: 10.1007/s10549-006-9372-z PubMedGoogle Scholar
  99. 99.
    Yang X, Ferguson AT, Nass SJ et al (2000) Transcriptional activation of estrogen receptor alpha in human breast cancer cells by histone deacetylase inhibition. Cancer Res 60:6890–6894PubMedGoogle Scholar
  100. 100.
    Bulun SE, Lin Z, Imir G et al (2005) Regulation of aromatase expression in estrogen-responsive breast and uterine disease: from bench to treatment. Pharmacol Rev 57:359–383. doi: 10.1124/pr.57.3.6 PubMedGoogle Scholar
  101. 101.
    van Landeghem AA, Poortman J, Nabuurs M, Thijssen JH (1985) Endogenous concentration and subcellular distribution of estrogens in normal and malignant human breast tissue. Cancer Res 45:2900–2906PubMedGoogle Scholar
  102. 102.
    Bulun SE, Zeitoun K, Sasano H, Simpson ER (1999) Aromatase in aging women. Semin Reprod Endocrinol 17:349–358. doi: 10.1055/s-1999-7720 PubMedGoogle Scholar
  103. 103.
    Tekmal RR, Kirma N, Gill K, Fowler K (1999) Aromatase overexpression and breast hyperplasia, an in vivo model—continued overexpression of aromatase is sufficient to maintain hyperplasia without circulating estrogens, and aromatase inhibitors abrogate these preneoplastic changes in mammary glands. Endocr Relat Cancer 6:307–314. doi: 10.1677/erc.0.0060307 PubMedGoogle Scholar
  104. 104.
    Suzuki T, Miki Y, Nakamura Y et al (2005) Sex steroid-producing enzymes in human breast cancer. Endocr Relat Cancer 12:701–720PubMedGoogle Scholar
  105. 105.
    Pasqualini JR, Chetrite GS (2005) Recent insight on the control of enzymes involved in estrogen formation and transformation in human breast cancer. J Steroid Biochem Mol Biol 93:221–236. doi: 10.1016/j.jsbmb.2005.02.007 PubMedGoogle Scholar
  106. 106.
    Cos S, Martinez-Campa C, Mediavilla MD, Sanchez-Barcelo EJ (2005) Melatonin modulates aromatase activity in MCF-7 human breast cancer cells. J Pineal Res 38:136–142. doi: 10.1111/j.1600-079X.2004.00186.x PubMedGoogle Scholar
  107. 107.
    González A, Martínez-Campa C, Mediavilla MD, Alonso-González C, Sánchez-Barceló EJ, Cos S (2007) Inhibitory effects of pharmacological doses of melatonin on aromatase activity and expression in rat glioma cells. Br J Cancer 97:755–760. doi: 10.1038/sj.bjc.6603935 PubMedGoogle Scholar
  108. 108.
    Martinez-Campa C, Gonzalez A, Mediavilla MD, Alonso-Gonzalez C, Sanchez-Barcelo EJ, Cos S (2005) Melatonin enhances the inhibitory effect of aminoglutethimide on aromatase activity in MCF-7 human breast cancer cells. Breast Cancer Res Treat 94:249–254. doi: 10.1007/s10549-005-9006-x PubMedGoogle Scholar
  109. 109.
    Cos S, Gonzalez A, Güezmes A et al (2006) Melatonin inhibits the growth of DMBA-induced mammary tumors by decreasing the local biosynthesis of estrogens through the modulation of aromatase activity. Int J Cancer 118:274–278. doi: 10.1002/ijc.21401 PubMedGoogle Scholar
  110. 110.
    Gonzalez A, Cos S, Martinez-Campa C et al (2008) Selective estrogen enzyme modulator actions of melatonin in human breast cancer cells. J Pineal Res (Epub ahead of print). doi: 10.1111/j.1600-079X.2008.00559.x
  111. 111.
    Izawa M, Harada T, Taniguchi F, Ohama Y, Takenaka Y, Terakawa N (2008) An epigenetic disorder may cause aberrant expression of aromatase gene in endometriotic stromal cells. Fertil Steril 89:1390–1396PubMedGoogle Scholar
  112. 112.
    Cai Z, Kwintkiewicz J, Young ME, Stocco C (2007) Prostaglandin E2 increases cyp19 expression in rat granulosa cells: implication of GATA-4. Mol Cell Endocrinol 263:181–189. doi: 10.1016/j.mce.2006.09.012 PubMedGoogle Scholar
  113. 113.
    Irahara N, Miyoshi Y, Taguchi T, Tamaki Y, Noguchi S (2006) Quantitative analysis of aromatase mRNA expression derived from various promoters (I.4, I.3, PII and I.7) and its association with expression of TNF-alpha, IL-6 and COX-2 mRNAs in human breast cancer. Int J Cancer 118:1915–1921. doi: 10.1002/ijc.21562 PubMedGoogle Scholar
  114. 114.
    Subbaramaiah K, Howe LR, Port ER et al (2006) HER-2/neu status is a determinant of mammary aromatase activity in vivo: evidence for a cyclooxygenase-2-dependent mechanism. Cancer Res 66:5504–5511. doi: 10.1158/0008-5472.CAN-05-4076 PubMedGoogle Scholar
  115. 115.
    Subbaramaiah K, Hudis C, Chang SH, Hla T, Dannenberg AJ (2008) EP2 and EP4 receptors regulate aromatase expression in human adipocytes and breast cancer cells. Evidence of a BRCA1 and p300 exchange. J Biol Chem 283:3433–3444. doi: 10.1074/jbc.M705409200 PubMedGoogle Scholar
  116. 116.
    Esposito E, Iacono A, Muia C et al (2008) Signal transduction pathways involved in protective effects of melatonin in C6 glioma cells. J Pineal Res 44:78–87PubMedGoogle Scholar
  117. 117.
    Dong WG, Mei Q, Yu JP, Xu JM, Xiang L, Xu Y (2003) Effects of melatonin on the expression of iNOS and COX-2 in rat models of colitis. World J Gastroenterol 9:1307–1311PubMedGoogle Scholar
  118. 118.
    Mrnka L, Hock M, Rybova M, Pacha J (2008) Melatonin inhibits prostaglandin E2- and sodium nitroprusside-induced ion secretion in rat distal colon. Eur J Pharmacol 581:164–170. doi: 10.1016/j.ejphar.2007.11.031 PubMedGoogle Scholar
  119. 119.
    Deng WG, Tang ST, Tseng HP, Wu KK (2006) Melatonin suppresses macrophage cyclooxygenase-2 and inducible nitric oxide synthase expression by inhibiting p52 acetylation and binding. Blood 108:518–5124. doi: 10.1182/blood-2005-09-3691 PubMedGoogle Scholar
  120. 120.
    Fan W, Yanase T, Morinaga H et al (2005) Activation of peroxisome proliferator-activated receptor-gamma and retinoid X receptor inhibits aromatase transcription via nuclear factor-kappaB. Endocrinology 146:85–92. doi: 10.1210/en.2004-1046 PubMedGoogle Scholar
  121. 121.
    Moon IK, Jarstfer MB (2007) The human telomere and its relationship to human disease, therapy, and tissue engineering. Front Biosci 12:4595–4620. doi: 10.2741/2412 PubMedGoogle Scholar
  122. 122.
    Shay JW, Bacchetti S (1997) A survey of telomerase activity in human cancer. Eur J Cancer 33:787–791. doi: 10.1016/S0959-8049(97)00062-2 PubMedGoogle Scholar
  123. 123.
    Shpitz B, Zimlichman S, Zemer R (1999) Telomerase activity in ductal carcinoma in situ of the breast. Breast Cancer Res Treat 58:65–69. doi: 10.1023/A:1006394209922 PubMedGoogle Scholar
  124. 124.
    Kirkpatrick KL, Clark G, Ghilchick M, Newbold RF, Mokbel K (2003) hTERT mRNA expression correlates with telomerase activity in human breast cancer. Eur J Surg Oncol 29:321–326. doi: 10.1053/ejso.2002.1374 PubMedGoogle Scholar
  125. 125.
    Blasco MA (2007) The epigenetic regulation of mammalian telomeres. Nat Rev Genet 8:299–309. doi: 10.1038/nrg2047 PubMedGoogle Scholar
  126. 126.
    Lai SR, Phipps SM, Liu L, Andrews LG, Tollefsbol TO (2005) Epigenetic control of telomerase and modes of telomere maintenance in aging and abnormal systems. Front Biosci 10:1779–1796. doi: 10.2741/1661 PubMedGoogle Scholar
  127. 127.
    Gonzalo S, Jaco I, Fraga MF et al (2006) DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat Cell Biol 8:416–424. doi: 10.1038/ncb1386 PubMedGoogle Scholar
  128. 128.
    Guilleret I, Benhattar J (2003) Demethylation of the human telomerase catalytic subunit (hTERT) gene promoter reduced hTERT expression and telomerase activity and shortened telomeres. Exp Cell Res 289:326–334. doi: 10.1016/S0014-4827(03)00281-7 PubMedGoogle Scholar
  129. 129.
    Renaud S, Loukinov D, Abdullaev Z et al (2007) Dual role of DNA methylation inside and outside of CTCF-binding regions in the transcriptional regulation of the telomerase hTERT gene. Nucleic Acids Res 35:1245–1256. doi: 10.1093/nar/gkl1125 PubMedGoogle Scholar
  130. 130.
    Korkmaz A, Reiter RJ (2008) Epigenetic regulation: a new research area for melatonin? J Pineal Res 44:41–44PubMedGoogle Scholar
  131. 131.
    Lee WJ, Shim JY, Zhu BT (2005) Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol 68:1018–1030. doi: 10.1124/mol.104.008367 PubMedGoogle Scholar
  132. 132.
    Berletch JB, Liu C, Love WK, Andrews LG, Katiyar SK, Tollefsbol TO (2008) Epigenetic and genetic mechanisms contribute to telomerase inhibition by EGCG. J Cell Biochem 103:509–519. doi: 10.1002/jcb.21417 PubMedGoogle Scholar
  133. 133.
    Leon-Blanco MM, Guerrero JM, Reiter RJ, Pozo D (2004) RNA expression of human telomerase subunits TR and TERT is differentially affected by melatonin receptor agonists in the MCF–7 tumor cell line. Cancer Lett 216:73–80. doi: 10.1016/j.canlet.2004.05.003 PubMedGoogle Scholar
  134. 134.
    Farabegoli F, Barbi C, Lambertini E, Piva R (2007) (−)-Epigallocatechin-3-gallate downregulates estrogen receptor alpha function in MCF-7 breast carcinoma cells. Cancer Detect Prev 31:499–504. doi: 10.1016/j.cdp. 2007.10.018 PubMedGoogle Scholar
  135. 135.
    Cos S, Gonzalez A, Martinez-Campa C, Mediavilla MD, Alonso-Gonzalez C, Sanchez-Barcelo EJ (2006) Estrogen-signaling pathway: a link between breast cancer and melatonin oncostatic actions. Cancer Detect Prev 30:118–128. doi: 10.1016/j.cdp. 2006.03.002 PubMedGoogle Scholar
  136. 136.
    Mukhopadhyay NK, Gordon GJ, Maulik G et al (2005) Histone deacetylation is directly involved in desilencing the expression of the catalytic subunit of telomerase in normal lung fibroblast. J Cell Mol Med 9:662–669. doi: 10.1111/j.1582-4934.2005.tb00496.x PubMedGoogle Scholar
  137. 137.
    Suenaga M, Soda H, Oka M et al (2002) Histone deacetylase inhibitors suppress telomerase reverse transcriptase mRNA expression in prostate cancer cells. Int J Cancer 97:621–625. doi: 10.1002/ijc.10082 PubMedGoogle Scholar
  138. 138.
    Hou M, Wang X, Popov N (2002) The histone deacetylase inhibitor trichostatin A derepresses the telomerase reverse transcriptase (hTERT) gene in human cells. Exp Cell Res 274:25–34. doi: 10.1006/excr.2001.5462 PubMedGoogle Scholar
  139. 139.
    Fang MZ, Wang Y, Ai N et al (2003) Tea polyphenol (−)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res 63:7563–7570PubMedGoogle Scholar
  140. 140.
    Garcia V, Garcia JM, Pena C (2008) Free circulating mRNA in plasma from breast cancer patients and clinical outcome. Cancer Lett 263:312–320. doi: 10.1016/j.canlet.2008.01.008 PubMedGoogle Scholar
  141. 141.
    Fu M, Wang C, Li Z, Sakamaki T, Pestell RG (2004) Minireview: cyclin D1: normal and abnormal functions. Endocrinology 145:5439–5447. doi: 10.1210/en.2004-0959 PubMedGoogle Scholar
  142. 142.
    Fu M, Rao M, Bouras T et al (2005) Cyclin D1 inhibits peroxisome proliferator-activated receptor gamma-mediated adipogenesis through histone deacetylase recruitment. J Biol Chem 280:16934–16941. doi: 10.1074/jbc.M500403200 PubMedGoogle Scholar
  143. 143.
    Cicatiello L, Addeo R, Sasso A (2004) Estrogens and progesterone promote persistent CCND1 gene activation during G1 by inducing transcriptional derepression via c-Jun/c-Fos/estrogen receptor (progesterone receptor) complex assembly to a distal regulatory element and recruitment of cyclin D1 to its own gene promoter. Mol Cell Biol 24:7260–7274. doi: 10.1128/MCB.24.16.7260-7274.2004 PubMedGoogle Scholar
  144. 144.
    De Los Santos M, Martinez-Iglesias O, Aranda A (2007) Anti-estrogenic actions of histone deacetylase inhibitors in MCF-7 breast cancer cells. Endocr Relat Cancer 14:1021–1028. doi: 10.1677/ERC-07-0144 Google Scholar
  145. 145.
    Cini G, Neri B, Pacini A et al (2005) Antiproliferative activity of melatonin by transcriptional inhibition of cyclin D1 expression: a molecular basis for melatonin-induced oncostatic effects. J Pineal Res 39:12–20. doi: 10.1111/j.1600-079X.2004.00206.x PubMedGoogle Scholar
  146. 146.
    Siu SW, Lau KW, Tam PC, Shiu SY (2002) Melatonin and prostate cancer cell proliferation: interplay with castration, epidermal growth factor, and androgen sensitivity. Prostate 52:106–122. doi: 10.1002/pros.10098 PubMedGoogle Scholar
  147. 147.
    Cos S, Recio J, Sánchez-Barceló EJ (1996) Modulation of the length of the cell cycle time of MCF-7 human breast cancer cells by melatonin. Life Sci 58:811–816. doi: 10.1016/0024-3205(95)02359-3 PubMedGoogle Scholar
  148. 148.
    Reiter RJ, Tan DX, Korkmaz A et al (2007) Light at night, chronodisruption, melatonin suppression, and cancer risk: a review. Crit Rev Oncog 13:303–328PubMedGoogle Scholar
  149. 149.
    Blask DE, Brainard GC, Dauchy RT et al (2005) Melatonin-depleted blood from premenopausal women exposed to light at night stimulates growth of human breast cancer xenografts in nude rats. Cancer Res 65:11174–11184. doi: 10.1158/0008-5472.CAN-05-1945 PubMedGoogle Scholar
  150. 150.
    Megdal SP, Kroenke CH, Laden F, Pukkala E, Schernhammer ES (2005) Night work and breast cancer risk: a systematic review and meta-analysis. Eur J Cancer 41:2023–2032. doi: 10.1016/j.ejca.2005.05.010 PubMedGoogle Scholar
  151. 151.
    Davis S, Mirick DK (2006) Circadian disruption, shift work and the risk of cancer: a summary of the evidence and studies in Seattle. Cancer Causes Control 17:539–545. doi: 10.1007/s10552-005-9010-9 PubMedGoogle Scholar
  152. 152.
    Hansen J (2006) Risk of breast cancer after night- and shift work: current evidence and ongoing studies in Denmark. Cancer Causes Control 17:531–537. doi: 10.1007/s10552-005-9006-5 PubMedGoogle Scholar
  153. 153.
    Cos S, Alvarez A, Mediavilla MD, Bartsch C, Bartsch H, Sanchez-Barcelo EJ (2000) Influence of serum from healthy or breast tumor-bearing women on the growth of MCF-7 human breast cancer cells. Int J Mol Med 5:651–656PubMedGoogle Scholar
  154. 154.
    Hirayama J, Sassone-Corsi P (2005) Structural and functional features of transcription factors controlling the circadian clock. Curr Opin Genet Dev 15:548–556. doi: 10.1016/j.gde.2005.07.003 PubMedGoogle Scholar
  155. 155.
    Yoo SH, Yamazaki S, Lowrey PL et al (2004) PERIOD2: luciferase real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci USA 101:5339–53346. doi: 10.1073/pnas.0308709101 PubMedGoogle Scholar
  156. 156.
    Kume K, Zylka MJ, Sriram S et al (1999) mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98:193–205. doi: 10.1016/S0092-8674(00)81014-4 PubMedGoogle Scholar
  157. 157.
    Doi M, Hirayama J, Sassone-Corsi P (2006) Circadian regulator CLOCK is a histone acetyltransferase. Cell 125:497–508. doi: 10.1016/j.cell.2006.03.033 PubMedGoogle Scholar
  158. 158.
    Hirayama J, Sahar S, Grimaldi B et al (2007) CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 450:1086–1090. doi: 10.1038/nature06394 PubMedGoogle Scholar
  159. 159.
    Hirayama J, Cho S, Sassone-Corsi P (2007) Circadian control by the reduction/oxidation pathway: catalase represses light-dependent clock gene expression in the zebrafish. Proc Natl Acad Sci USA 104:15747–15752. doi: 10.1073/pnas.0705614104 PubMedGoogle Scholar
  160. 160.
    Fu L, Pelicano H, Liu J, Huang P, Lee C (2002) The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111:41–50. doi: 10.1016/S0092-8674(02)00961-3 PubMedGoogle Scholar
  161. 161.
    Xiang S, Coffelt SB, Mao L, Yuan L, Cheng Q, Hill SM (2008) Period-2: a tumor suppressor gene in breast cancer. J Circadian Rhythms 6:4. doi: 10.1186/1740-3391-6-4 PubMedGoogle Scholar
  162. 162.
    Gery S, Virk RK, Chumakov K, Yu A, Koeffler HP (2007) The clock gene Per2 links the circadian system to the estrogen receptor. Oncogene 26:7916–7920. doi: 10.1038/sj.onc.1210585 PubMedGoogle Scholar
  163. 163.
    Boivin DB, James FO, Wu A, Cho-Park PF, Xiong H, Sun ZS (2003) Circadian clock genes oscillate in human peripheral blood mononuclear cells. Blood 102:4143–4145. doi: 10.1182/blood-2003-03-0779 PubMedGoogle Scholar
  164. 164.
    Cajochen C, Jud C, Munch M, Kobialka S, Wirz-Justice A, Albrecht U (2006) Evening exposure to blue light stimulates the expression of the clock gene PER2 in humans. Eur J Neurosci 23:1082–1086. doi: 10.1111/j.1460-9568.2006.04613.x PubMedGoogle Scholar
  165. 165.
    Provencio I, Rollag MD, Castrucci AM (2002) Photoreceptive net in the mammalian retina. This mesh of cells may explain how some blind mice can still tell day from night. Nature 415(6871):493. doi: 10.1038/415493a PubMedGoogle Scholar
  166. 166.
    Miyamoto Y, Sancar A (1998) Vitamin B2-based blue-light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in mammals. Proc Natl Acad Sci USA 95:6097–6102. doi: 10.1073/pnas.95.11.6097 PubMedGoogle Scholar
  167. 167.
    Selby CP, Thompson C, Schmitz TM, Van Gelder RN, Sancar A (2000) Functional redundancy of cryptochromes and classical photoreceptors for nonvisual ocular photoreception in mice. Proc Natl Acad Sci USA 97:14697–14702. doi: 10.1073/pnas.260498597 PubMedGoogle Scholar
  168. 168.
    Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070–1073. doi: 10.1126/science.1067262 PubMedGoogle Scholar
  169. 169.
    Brainard GC, Hanifin JP, Greeson JM et al (2001) Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. J Neurosci 21:6405–6412PubMedGoogle Scholar
  170. 170.
    Wright HR, Lack LC (2001) Effect of light wavelength on suppression and phase delay of the melatonin rhythm. Chronobiol Int 18:801–808. doi: 10.1081/CBI-100107515 PubMedGoogle Scholar
  171. 171.
    Lockley SW, Brainard GC, Czeisler CA (2003) High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. J Clin Endocrinol Metab 88:4502–4505. doi: 10.1210/jc.2003-030570 PubMedGoogle Scholar
  172. 172.
    Cajochen C, Munch M, Kobialka S et al (2001) High sensitivity of human melatonin, alertness, thermoregulation, and heart rate to short wavelength light. J Clin Endocrinol Metab 90:1311–1. doi: 10.1210/jc.2004-0957 Google Scholar
  173. 173.
    Reppert SM, Weaver DR (2001) Molecular analysis of mammalian circadian rhythms. Annu Rev Physiol 63:647–676. doi: 10.1146/annurev.physiol.63.1.647 PubMedGoogle Scholar
  174. 174.
    Salti R, Tarquini R, Stagi S et al (2006) Age-dependent association of exposure to television screen with children’s urinary melatonin excretion? Neuroendocrinol Lett 27:73–80PubMedGoogle Scholar
  175. 175.
    Chen ST, Choo KB, Hou MF, Yeh KT, Kuo SJ, Chang JG (2005) Deregulated expression of the PER1, PER2 and PER3 genes in breast cancers. Carcinogenesis 26:1241–1246. doi: 10.1093/carcin/bgi075 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Ahmet Korkmaz
    • 1
    • 2
    Email author
  • Emilio J. Sanchez-Barcelo
    • 3
  • Dun-Xian Tan
    • 2
  • Russel J. Reiter
    • 2
  1. 1.Department of Physiology, School of MedicineGulhane Military Medical AcademyAnkaraTurkey
  2. 2.Department of Cellular and Structural BiologyThe University of Texas Health Science Center at San AntonioSan Antonio78229USA
  3. 3.Department of Physiology and Pharmacology, School of MedicineUniversity of CantabriaSantanderSpain

Personalised recommendations