Breast Cancer Research and Treatment

, Volume 115, Issue 3, pp 561–571 | Cite as

Columnar cell lesions, mammographic density and breast cancer risk

  • Gulisa Turashvili
  • Steven McKinney
  • Lisa Martin
  • Karen A. Gelmon
  • Peter Watson
  • Norman Boyd
  • Samuel Aparicio
Preclinical Study


Background Mammographic density is the third largest risk factor for ductal carcinoma in-situ (DCIS) and invasive breast cancer. However, the question of whether risk-mediating precursor histological changes, such as columnar cell lesions (CCLs), can be found in dense but non-malignant breast tissues has not been systematically addressed. We hypothesized that CCLs may be related to breast composition, in particular breast density, in non-tumour containing breast tissue. Patients and methods We examined randomly selected tissue samples obtained by bilateral subcutaneous mastectomy from a forensic autopsy series, where tissue composition was assessed, and in which there had been no selection of subjects or histological specimens for breast disease. We reviewed H&E slides for the presence of atypical and non-atypical CCLs and correlated with histological features measured using quantitative microscopy. Results CCLs were seen in 40 out of 236 cases (17%). The presence of CCLs was found to be associated with several measures of breast tissue composition, including radiographic density: high Faxitron Wolfe Density (P = 0.037), high density estimated by percentage non-adipose tissue area (P = 0.037), high percentage collagen (P = 9.2E−05) and high percentage glandular area (P = 2E−05). DCIS was identified in two atypical CCL cases. The extent of CCL was not associated with any of the examined variables. Conclusion Our study is the first to report a possible association between CCLs and breast tissue composition, including mammographic density. Our data suggest that prospective elucidation of the strength and nature of the clinicopathological correlation may lead to an enhanced understanding of mammographic density and evidence based management strategies.


Autopsy Bilateral mastectomy Breast cancer risk Columnar cell lesion Mammographic density 



Atypical ductal hyperplasia


Atypical lobular hyperplasia


Body mass index


Columnar cell change


Columnar cell hyperplasia


Columnar cell lesion


Ductal carcinoma in-situ

DIN1a, DIN1b

Ductal intraepithelial neoplasia 1b, 1a


Estrogen receptor


Mammographic density


Terminal duct lobular unit


Usual ductal hyperplasia



We thank the generous assistance of Dr. Sue Bartow in providing access to the material on which this study was based. S. Aparicio is supported by Canada Research Chair in Molecular Oncology. G. Turashvili is supported by the CIHR Training Program for Clinician Scientists in Molecular Oncologic Pathology (STP-53912).

Supplementary material

10549_2008_99_MOESM1_ESM.pdf (17 kb)
(DOCX 13 kb)


  1. 1.
    Ingleby H, Gerson-Cohen J (1960) Comparative anatomy, pathology and roentgenology of the breast. University of Philadelphia Press, PhiladelphiaGoogle Scholar
  2. 2.
    Li T, Sun L, Miller N et al (2005) The association of measured breast tissue characteristics with mammographic density and other risk factors for breast cancer. Cancer Epidemiol Biomarkers Prev 14:343–349. doi: 10.1158/1055-9965.EPI-04-0490 PubMedCrossRefGoogle Scholar
  3. 3.
    Boyd NF, Dite GS, Stone J et al (2002) Heritability of mammographic density, a risk factor for breast cancer. N Engl J Med 347:886–894. doi: 10.1056/NEJMoa013390 PubMedCrossRefGoogle Scholar
  4. 4.
    von Schoultz B (2004) The effects of tibolone and oestrogen-based HT on breast cell proliferation and mammographic density. Maturitas 49:S16–S21. doi: 10.1016/j.maturitas.2004.06.011 CrossRefGoogle Scholar
  5. 5.
    Topal NB, Ayhan S, Topal U et al (2006) Effects of hormone replacement therapy regimens on mammographic breast density: the role of progestins. J Obstet Gynaecol Res 32:305–308. doi: 10.1111/j.1447-0756.2006.00402.x PubMedCrossRefGoogle Scholar
  6. 6.
    van Gils CH, Hendriks JH, Otten JD et al (2000) Parity and mammographic breast density in relation to breast cancer risk: indication of interaction. Eur J Cancer Prev 9:105–111. doi: 10.1097/00008469-200004000-00006 PubMedCrossRefGoogle Scholar
  7. 7.
    Boyd NF, Lockwood GA, Byng JW et al (1998) Mammographic densities and breast cancer risk. Cancer Epidemiol Biomarkers Prev 7:1133–1144PubMedGoogle Scholar
  8. 8.
    Arthur JE, Ellis IO, Flowers C et al (1990) The relationship of “high risk” mammographic patterns to histological risk factors for development of cancer in the human breast. Br J Radiol 63:845–849PubMedCrossRefGoogle Scholar
  9. 9.
    Urbanski S, Jensen HM, Cooke G et al (1988) The association of histological and radiological indicators of breast cancer risk. Br J Cancer 58:474–479PubMedGoogle Scholar
  10. 10.
    Foote FW, Stewart FW (1945) Comparative studies of cancerous versus noncancerous breasts. Ann Surg 121:197–222PubMedCrossRefGoogle Scholar
  11. 11.
    Lanyi M, Citoler P (1981) The differential diagnosis of microcalcification. Micro-cyst (blunt duct) adenosis (author’s transl). Rofo 134:225–231Google Scholar
  12. 12.
    Azzopardi JG, Ahmed A, Millis RR (1979) Problems in breast pathology. Major Probl Pathol 11:i–xvi, 1–466PubMedGoogle Scholar
  13. 13.
    Tavassoli FA (2001) Ductal intraepithelial neoplasia of the breast. Virchows Arch 438:221–227. doi: 10.1007/s004280100394 PubMedCrossRefGoogle Scholar
  14. 14.
    Eusebi V, Foschini MP, Cook MG et al (1989) Long-term follow-up of in situ carcinoma of the breast with special emphasis on clinging carcinoma. Semin Diagn Pathol 6:165–173PubMedGoogle Scholar
  15. 15.
    WHO (2003) World health organization classification of tumours. Pathology and genetics of tumours of the breast and female genital organs. IARC Press, Lyon, FranceGoogle Scholar
  16. 16.
    Rosen PP (2001) Rosen’s breast pathology. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  17. 17.
    McLaren BK, Gobbi H, Schuyler PA et al (2005) Immunohistochemical expression of estrogen receptor in enlarged lobular units with columnar alteration in benign breast biopsies: a nested case-control study. Am J Surg Pathol 29:105–108. doi: 10.1097/01.pas.0000146013.76881.d9 PubMedCrossRefGoogle Scholar
  18. 18.
    Luna-More S, Weil B, Bautista D et al (2004) Bcl-2 protein in normal, hyperplastic and neoplastic breast tissues. A metabolite of the putative stem-cell subpopulation of the mammary gland. Histol Histopathol 19:457–463PubMedGoogle Scholar
  19. 19.
    Goldstein NS, O’Malley BA (1997) Cancerization of small ectatic ducts of the breast by ductal carcinoma in situ cells with apocrine snouts: a lesion associated with tubular carcinoma. Am J Clin Pathol 107:561–566PubMedGoogle Scholar
  20. 20.
    Gopalan A, Hoda SA (2005) Columnar cell hyperplasia and lobular carcinoma in situ coexisting in the same duct. Breast J 11:210. doi: 10.1111/j.1075-122X.2005.21459.x PubMedCrossRefGoogle Scholar
  21. 21.
    Rosen PP (1999) Columnar cell hyperplasia is associated with lobular carcinoma in situ and tubular carcinoma. Am J Surg Pathol 23:1561. doi: 10.1097/00000478-199912000-00017 PubMedCrossRefGoogle Scholar
  22. 22.
    Sahoo S, Recant WM (2005) Triad of columnar cell alteration, lobular carcinoma in situ, and tubular carcinoma of the breast. Breast J 11:140–142. doi: 10.1111/j.1075-122X.2005.21616.x PubMedCrossRefGoogle Scholar
  23. 23.
    Simpson PT, Gale T, Reis-Filho JS et al (2005) Columnar cell lesions of the breast: the missing link in breast cancer progression? A morphological and molecular analysis. Am J Surg Pathol 29:734–746. doi: 10.1097/01.pas.0000157295.93914.3b PubMedCrossRefGoogle Scholar
  24. 24.
    Sewell CW (2004) Pathology of high-risk breast lesions and ductal carcinoma in situ. Radiol Clin North Am 42:821–830. doi: 10.1016/j.rcl.2004.03.013 PubMedCrossRefGoogle Scholar
  25. 25.
    Feeley L, Quinn CM (2008) Columnar cell lesions of the breast. Histopathology 52:11–19PubMedGoogle Scholar
  26. 26.
    Pinder SE, Reis-Filho JS (2007) Non-operative breast pathology: columnar cell lesions. J Clin Pathol 60:1307–1312. doi: 10.1136/jcp.2006.040634 PubMedCrossRefGoogle Scholar
  27. 27.
    Kim MJ, Kim EK, Oh KK et al (2006) Columnar cell lesions of the breast: mammographic and US features. Eur J Radiol 60:264–269. doi: 10.1016/j.ejrad.2006.06.013 PubMedCrossRefGoogle Scholar
  28. 28.
    Bartow SA, Mettler RT, Black WC (1997) Correlations between radiographic patterns and morphology of the female breast. Rad Patterns Morphol 13:263–275Google Scholar
  29. 29.
    Hart BL, Steinbock RT, Mettler FA Jr et al (1989) Age and race related changes in mammographic parenchymal patterns. Cancer 63:2537–2539. doi :10.1002/1097-0142(19890615)63:12<2537::AID-CNCR2820631230>3.0.CO;2-0PubMedCrossRefGoogle Scholar
  30. 30.
    Bartow SA, Pathak DR, Mettler FA et al (1995) Breast mammographic pattern: a concatenation of confounding and breast cancer risk factors. Am J Epidemiol 142:813–819PubMedGoogle Scholar
  31. 31.
    Bartow SA, Pathak DR, Black WC et al (1987) Prevalence of benign, atypical, and malignant breast lesions in populations at different risk for breast cancer. A forensic autopsy study. Cancer 60:2751–2760. doi :10.1002/1097-0142(19871201)60:11<2751::AID-CNCR2820601127>3.0.CO;2-MPubMedCrossRefGoogle Scholar
  32. 32.
    Schnitt SJ, Vincent-Salomon A (2003) Columnar cell lesions of the breast. Adv Anat Pathol 10:113–124. doi: 10.1097/00125480-200305000-00001 PubMedCrossRefGoogle Scholar
  33. 33.
    Boyd NF, Martin LJ, Yaffe MJ et al (2006) Mammographic density: a hormonally responsive risk factor for breast cancer. J Br Menopause Soc 12:186–193. doi: 10.1258/136218006779160436 PubMedCrossRefGoogle Scholar
  34. 34.
    Boyd NF, Guo H, Martin LJ et al (2007) Mammographic density and the risk and detection of breast cancer. N Engl J Med 356:227–236. doi: 10.1056/NEJMoa062790 PubMedCrossRefGoogle Scholar
  35. 35.
    Mitchell G, Antoniou AC, Warren R et al (2006) Mammographic density and breast cancer risk in BRCA1 and BRCA2 mutation carriers. Cancer Res 66:1866–1872. doi: 10.1158/0008-5472.CAN-05-3368 PubMedCrossRefGoogle Scholar
  36. 36.
    Falkenberry SS, Legare RD (2002) Risk factors for breast cancer. Obstet Gynecol Clin North Am 29:159–172. doi: 10.1016/S0889-8545(03)00059-7 PubMedCrossRefGoogle Scholar
  37. 37.
    Hulka BS, Moorman PG (2001) Breast cancer: hormones and other risk factors. Maturitas 38:103–113. discussion 113–106. doi: 10.1016/S0378-5122(00)00196-1 PubMedCrossRefGoogle Scholar
  38. 38.
    Martin AM, Weber BL (2000) Genetic and hormonal risk factors in breast cancer. J Natl Cancer Inst 92:1126–1135. doi: 10.1093/jnci/92.14.1126 PubMedCrossRefGoogle Scholar
  39. 39.
    Laden F, Hunter DJ (1998) Environmental risk factors and female breast cancer. Annu Rev Public Health 19:101–123. doi: 10.1146/annurev.publhealth.19.1.101 PubMedCrossRefGoogle Scholar
  40. 40.
    Bartow SA, Pathak DR, Mettler FA (1990) Radiographic microcalcification and parenchymal patterns as indicators of histologic “high-risk” benign breast disease. Cancer 66:1721–1725. doi :10.1002/1097-0142(19901015)66:8<1721::AID-CNCR2820660812>3.0.CO;2-IPubMedCrossRefGoogle Scholar
  41. 41.
    Wellings SR, Wolfe JN (1978) Correlative studies of the histological and radiographic appearance of the breast parenchyma. Radiology 129:299–306PubMedGoogle Scholar
  42. 42.
    Bright RA, Morrison AS, Brisson J et al (1988) Relationship between mammographic and histologic features of breast tissue in women with benign biopsies. Cancer 61:266–271. doi :10.1002/1097-0142(19880115)61:2<266::AID-CNCR2820610212>3.0.CO;2-NPubMedCrossRefGoogle Scholar
  43. 43.
    Bland KI, Kuhns JG, Buchanan JB et al (1982) A clinicopathologic correlation of mammographic parenchymal patterns and associated risk factors for human mammary carcinoma. Ann Surg 195:582–594. doi: 10.1097/00000658-198205000-00007 PubMedCrossRefGoogle Scholar
  44. 44.
    Boyd NF, Jensen HM, Cooke G et al (1992) Relationship between mammographic and histological risk factors for breast cancer. J Natl Cancer Inst 84:1170–1179. doi: 10.1093/jnci/84.15.1170 PubMedCrossRefGoogle Scholar
  45. 45.
    Boyd NF, Jensen HM, Cooke G et al (2000) Mammographic densities and the prevalence and incidence of histological types of benign breast disease. Reference pathologists of the canadian national breast screening study. Eur J Cancer Prev 9:15–24. doi: 10.1097/00008469-200002000-00003 PubMedCrossRefGoogle Scholar
  46. 46.
    Key TJ, Verkasalo PK, Banks E (2001) Epidemiology of breast cancer. Lancet Oncol 2:133–140. doi: 10.1016/S1470-2045(00)00254-0 PubMedCrossRefGoogle Scholar
  47. 47.
    Russo J, Hu YF, Yang X (2000) Developmental, cellular, and molecular basis of human breast cancer. J Natl Cancer Inst Monogr 27:17–37PubMedGoogle Scholar
  48. 48.
    Butler LM, Potischman NA, Newman B (2000) Menstrual risk factors and early-onset breast cancer. Cancer Causes Control 11:451–458. doi: 10.1023/A:1008956524669 PubMedCrossRefGoogle Scholar
  49. 49.
    Bissell MJ, Barcellos-Hoff MH (1987) The influence of extracellular matrix on gene expression: is structure the message? J Cell Sci Suppl 8:327–343PubMedGoogle Scholar
  50. 50.
    Tlsty TD (1998) Cell-adhesion-dependent influences on genomic instability and carcinogenesis. Curr Opin Cell Biol 10:647–653. doi: 10.1016/S0955-0674(98)80041-0 PubMedCrossRefGoogle Scholar
  51. 51.
    Guo YP, Martin LJ, Hanna W et al (2001) Growth factors and stromal matrix proteins associated with mammographic densities. Cancer Epidemiol Biomarkers Prev 10:243–248PubMedGoogle Scholar
  52. 52.
    Boyd NF, Stone J, Martin LJ et al (2002) The association of breast mitogens with mammographic densities. Br J Cancer 87:876–882. doi: 10.1038/sj.bjc.6600537 PubMedCrossRefGoogle Scholar
  53. 53.
    Hankinson SE, Willett WC, Michaud DS (1999) Plasma prolactin levels and subsequent risk of breast cancer in postmenopausal women. J Natl Cancer Inst 91:629–634. doi: 10.1093/jnci/91.7.629 PubMedCrossRefGoogle Scholar
  54. 54.
    Hankinson SE, Willett WC, Colditz GA et al (1998) Circulating concentrations of insulin-like growth factor-I and risk of breast cancer. Lancet 351:1393–1396. doi: 10.1016/S0140-6736(97)10384-1 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Gulisa Turashvili
    • 1
  • Steven McKinney
    • 1
  • Lisa Martin
    • 2
  • Karen A. Gelmon
    • 1
  • Peter Watson
    • 1
  • Norman Boyd
    • 2
  • Samuel Aparicio
    • 1
  1. 1.Molecular Oncology and Breast Cancer ProgramBC Cancer Research CentreVancouverCanada
  2. 2.Campbell Family Institute of Breast Cancer ResearchOntario Cancer InstituteTorontoCanada

Personalised recommendations