Breast Cancer Research and Treatment

, Volume 115, Issue 2, pp 325–333 | Cite as

Clinicopathological features of the triple-negative tumors in Chinese breast cancer patients

  • Wen-Jin Yin
  • Jin-Song Lu
  • Gen-Hong Di
  • Yan-Ping Lin
  • Li-Heng Zhou
  • Guang-Yu Liu
  • Jiong Wu
  • Kun-Wei Shen
  • Qi-Xia Han
  • Zhen-Zhou Shen
  • Zhi-Ming Shao
Preclinical Study

Abstract

In order to analyze the clinicopathological features of Chinese triple negative tumors, we performed a retrospective study of 1993 female unilateral breast cancer patients undergoing surgery in Cancer Hospital of Fudan University, Shanghai, China. Survival curves were performed with Kaplan–Meier method and annual recurrence hazard was estimated by hazard function. We observed that the rate of larger tumors in triple negative patients was higher than that in HR+/ERBB2− women, but lower than that in ERBB2+ subgroup (P = 0.0001). In addition, 21.83% of triple negative patients had four or more axillary lymph nodes involved as compared to 27.40% of ERBB2+ women and 22.75% of HR+/ERBB2− subgroup (P = 0.0056). In the survival analysis, we found a statistical significance for recurrence-free survival (RFS) among the three subgroups (P = 0.0037), with the rate of 72.89% for ERBB2+ patients, 78.40% for HR+/ERBB2− ones and 75.76% for triple negative ones at the 11th year respectively. When it came to hazard peaks, discrepancies existed in different subgroups. Similar to HR+/ERBB2− patients, triple negative subgroup showed an early major recurrence surge peaking at approximately year 2.5 as opposed to ERBB2+ counterparts with a tapering sharp at the 1st year. Furthermore, the first peak of triple negative tumors was higher than that of HR+/ERBB2− patients, but lower than that of ERBB2+ ones. Therefore, our findings suggested biological characteristics and prognostic outlook of Chinese triple negative breast cancers might be more favorable and somewhat different from those in Western populations.

Keywords

Breast neoplasm Triple negative Recurrence hazard 

Notes

Acknowledgements

The authors thank the family members for their willingness to cooperate with our study. This research was supported in part by the grants from the National Basic Research Program of China (2006CB910501), National Natural Science Foundation of China (30371580, 30572109); Shanghai Science and Technology Committee (03J14019, 06DJ14004, 06DZ19504).

References

  1. 1.
    Jemal A, Siegel R, Ward E et al (2007) Cancer statistics, 2007. CA Cancer J Clin 57:43–66PubMedCrossRefGoogle Scholar
  2. 2.
    Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365:1687–1717. doi: 10.1016/S0140-6736(05)66544-0 CrossRefGoogle Scholar
  3. 3.
    Joensuu H, Kellokumpu-Lehtinen PL, Bono P et al (2006) Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. N Engl J Med 354:809–820. doi: 10.1056/NEJMoa053028 PubMedCrossRefGoogle Scholar
  4. 4.
    Romand EH, Perez EA, Bryant J et al (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353:1673–1684. doi: 10.1056/NEJMoa052122 CrossRefGoogle Scholar
  5. 5.
    Piccart-Gebhart MJ, Procter M, Leyland-Jones B et al (2005) Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353:1659–1672. doi: 10.1056/NEJMoa052306 PubMedCrossRefGoogle Scholar
  6. 6.
    Slamon D, Eiermann W, Robert N et al (2005) Phase III randomized trial comparing doxorubicin and cyclophosphamide followed by docetaxel (AC→T) with doxorubicin and cyclophosphamide followed by docetaxel and trastuzumab (AC→TH) with docetaxel, carboplatin and trastuzumab (TCH) in HER2 positive early breast cancer patients: BCIRG 006 study. Paper presented at the 28th San Antonio Breast Cancer Symposium, Henry B. Gonzalez Convention Center, San Antonio, Texas, USA, 8–11 December 2005Google Scholar
  7. 7.
    Cleator S, Heller W, Coombes RC (2007) Triple-negative breast cancer: therapeutic options. Lancet Oncol 8:235–244. doi: 10.1016/S1470-2045(07)70074-8 PubMedCrossRefGoogle Scholar
  8. 8.
    Nielsen TO, Hsu FD, Jensen K et al (2004) Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10:5367–5374. doi: 10.1158/1078-0432.CCR-04-0220 PubMedCrossRefGoogle Scholar
  9. 9.
    Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874. doi: 10.1073/pnas.191367098 PubMedCrossRefGoogle Scholar
  10. 10.
    Dent R, Trudeau M, Pritchard KI et al (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13:4429–4434. doi: 10.1158/1078-0432.CCR-06-3045 PubMedCrossRefGoogle Scholar
  11. 11.
    Bauer KR, Brown M, Cress RD et al (2007) Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer Registry. Cancer 109:1721–1728. doi: 10.1002/cncr.22618 PubMedCrossRefGoogle Scholar
  12. 12.
    Rodriguez-Pinilla SM, Sarrio D, Honrado E et al (2006) Prognostic significance of basal-like phenotype and fascin expression in node-negative invasive breast carcinomas. Clin Cancer Res 12:1533–1539. doi: 10.1158/1078-0432.CCR-05-2281 PubMedCrossRefGoogle Scholar
  13. 13.
    Carey LA, Perou CM, Livasy CA et al (2006) Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295:2492–2502. doi: 10.1001/jama.295.21.2492 PubMedCrossRefGoogle Scholar
  14. 14.
    Banerjee S, Reis-Filho JS, Ashley S et al (2006) Basal-like breast carcinomas: clinical outcome and response to chemotherapy. J Clin Pathol 59:729–735. doi: 10.1136/jcp. 2005.033043 PubMedCrossRefGoogle Scholar
  15. 15.
    Carey LA, Dees EC, Sawyer L et al (2004) The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 15:2329–2334Google Scholar
  16. 16.
    Haffty BG, Yang Q, Reiss M et al (2006) Locoregional relapse and distant metastasis in conservatively managed triple negative early-stage breast cancer. J Clin Oncol 24:5652–5657. doi: 10.1200/JCO.2006.06.5664 PubMedCrossRefGoogle Scholar
  17. 17.
    Chang BW, Decker RH, Haffy BG et al (2007) Incidence of brain metastases in early-stage triple negative breast cancer patients. Paper presented at the 49th American Society for Therapeutic Radiology and Oncology (ASTRO) Annual Meeting, Los Angeles, California, USA, 28 October–1 November 2007Google Scholar
  18. 18.
    Kurebayashi J, Moriyab T, Ishidad T et al (2007) The prevalence of intrinsic subtypes and prognosis in breast cancer patients of different races. Breast 16:S72–S77. doi: 10.1016/j.breast.2007.07.017 PubMedCrossRefGoogle Scholar
  19. 19.
    Simes RJ, Zelen M (1985) Exploratory data analysis and the use of the hazard function for interpreting survival data: an investigator’s primer. J Clin Oncol 3:1418–1431PubMedGoogle Scholar
  20. 20.
    Howell A on behalf of the ATAC Trialists’ Group (2005) Author’s reply. Lancet 365:1225–1226Google Scholar
  21. 21.
    The Arimidex T Alone or in Combination (ATAC) Trialists’ Group (2008) Effect of anastrozole and tamoxifen as adjuvant treatment for early-stage breast cancer: 100-month analysis of the ATAC trial. Lancet Oncol 9:45–53. doi: 10.1016/S1470-2045(07)70385-6 CrossRefGoogle Scholar
  22. 22.
    Jatoi I, Tsimelzon A, Weiss H et al (2005) Hazard rates of recurrence following diagnosis of primary breast cancer. Breast Cancer Res Treat 89:173–178. doi: 10.1007/s10549-004-1722-0 PubMedCrossRefGoogle Scholar
  23. 23.
    McShane LM, Altman DG, Sauerbrei W et al (2006) REporting recommendations for tumor MARKer prognostic studies (REMARK). Breast Cancer Res Treat 100:229–235. doi: 10.1007/s10549-006-9242-8 PubMedCrossRefGoogle Scholar
  24. 24.
    Hilsenbeck SG, Ravdin PM, de Moor CA et al (1998) Time-dependence of hazard ratios for prognostic factors in primary breast cancer. Breast Cancer Res Treat 52:227–237. doi: 10.1023/A:1006133418245 PubMedCrossRefGoogle Scholar
  25. 25.
    Grambsch PM, Therneau TM (1994) Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 81:515–526. doi: 10.1093/biomet/81.3.515 CrossRefGoogle Scholar
  26. 26.
    Hupperets PS, Volovics L, Schouten LJ et al (1997) The prognostic significance of steroid receptor activity in tumor tissues of patients with primary breast cancer. Am J Clin Oncol 20:546–551. doi: 10.1097/00000421-199712000-00002 PubMedCrossRefGoogle Scholar
  27. 27.
    Saphner T, Tormey DC, Gray R (1996) Annual hazard rates of recurrence for breast cancer after primary therapy. J Clin Oncol 14:2738–2746PubMedGoogle Scholar
  28. 28.
    Schmitt M, Thomssen C, Ulm K et al (1997) Time-varying prognostic impact of tumour biological factors urokinase (uPA), PAI-1 and steroid hormone receptor status in primary breast cancer. Br J Cancer 76:306–311PubMedGoogle Scholar
  29. 29.
    Hahnel R, Spilsbury K (2004) Oestrogen receptors revisited: long-term follow up of over five thousand breast cancer patients. ANZ J Surg 74:957–960. doi: 10.1111/j.1445-1433.2004.03215.x PubMedCrossRefGoogle Scholar
  30. 30.
    Zahl PH, Tretli S (1997) Long-term survival of breast cancer in Norway by age and clinical stage. Stat Med 16:1435–1449. doi :10.1002/(SICI)1097-0258(19970715)16:13<1435::AID-SIM570>3.0.CO;2-8Google Scholar
  31. 31.
    Zahl P-H (2003) Regression analysis with multiplicative and time-varying additive regression coefficients with examples from breast and colon cancer. Stat Med 22:1113–1127. doi: 10.1002/sim.971 PubMedCrossRefGoogle Scholar
  32. 32.
    Olopade OI, Ikpatt FO, Dignam JJ et al (2004) “Intrinsic Gene Expression” subtypes correlated with grade and morphometric parameters reveal a high proportion of aggressive basal-like tumors among black women of African ancestry. Paper presented at American Society of Clinical Oncology Annual Meeting, New Orleans, Louisiana, USA, 5–8 June 2004Google Scholar
  33. 33.
    Nishimura R, Arima N (2008) Is triple negative a prognostic factor in breast cancer? Breast Cancer (in press). doi: 10.1007/s12282-008-0042-3
  34. 34.
    Lund MJ, Trivers KF, Porter PL et al (2008) Race and triple negative threats to breast cancer survival: a population-based study in Atlanta, GA. Breast Cancer Res Treat (in press). doi: 10.1007/s10549-008-9926-3
  35. 35.
    Goldhirsch A, Glick JH, Gelber RD et al (2005) Meeting highlights: international expert consensus on the primary therapy of early breast cancer 2005. Ann Oncol 16:1569–1583. doi: 10.1093/annonc/mdi326 PubMedCrossRefGoogle Scholar
  36. 36.
    Goldhirsch A, Wood WC, Gelber RD et al (2007) Progress and promise: highlights of the international expert consensus on the primary therapy of early breast cancer 2007. Ann Oncol 18:1133–1144. doi: 10.1093/annonc/mdm271 PubMedCrossRefGoogle Scholar
  37. 37.
    Harris L, Fritsche H, Mennel R et al (2007) American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 25:5287–5312. doi: 10.1200/JCO.2007.14.2364 PubMedCrossRefGoogle Scholar
  38. 38.
    Abd El-Rehim DM, Ball G, Pinder SE et al (2005) High-throughput protein expression analysis using tissue microarray technology of a large well-characterised series identifies biologically distinct classes of breast cancer confirming recent cDNA expression analyses. Int J Cancer 116:340–350. doi: 10.1002/ijc.21004 PubMedCrossRefGoogle Scholar
  39. 39.
    Burgess C, Hunter MS, Ramirez AJ (2001) A qualitative study of delay among women reporting symptoms of breast cancer. Br J Gen Pract 51:967–971PubMedGoogle Scholar
  40. 40.
    Meechan G, Collins J, Petrie KJ (2003) The relationship of symptoms and psychological factors to delay in seeking medical care for breast symptoms. Prev Med 36:374–378. doi: 10.1016/S0091-7435(02)00053-1 PubMedCrossRefGoogle Scholar
  41. 41.
    Burgess CC, Ramirez AJ, Richards MA et al (1998) Who and what influences delayed presentation in breast cancer? Br J Cancer 77:1343–1348PubMedGoogle Scholar
  42. 42.
    Richards MA, Westcombe AM, Love SB et al (1999) Influence of delay on survival in patients with breast cancer: a systematic review. Lancet 353:1119–1126. doi: 10.1016/S0140-6736(99)02143-1 PubMedCrossRefGoogle Scholar
  43. 43.
    Facione NC (1993) Delay versus help seeking for breast cancer symptoms: a critical review of the literature on patient and provider delay. Soc Sci Med 36:1521–1534. doi: 10.1016/0277-9536(93)90340-A PubMedCrossRefGoogle Scholar
  44. 44.
    Kang SP, Martel M, Harris LN (2008) Triple negative breast cancer: current understanding of biology and treatment options. Curr Opin Obstet Gynecol 20:40–46PubMedCrossRefGoogle Scholar
  45. 45.
    Ross JS, Fletcher JA, Linette GP et al (2003) The Her-2/neu gene and protein in breast cancer 2003: biomarker and target of therapy. Oncologist 8:307–325. doi: 10.1634/theoncologist.8-4-307 PubMedCrossRefGoogle Scholar
  46. 46.
    Rydén L, Landberg G, Stål O et al (2008) HER2 status in hormone receptor positive premenopausal primary breast cancer adds prognostic, but not tamoxifen treatment predictive, information. Breast Cancer Res Treat 109:351–357. doi: 10.1007/s10549-007-9660-2 PubMedCrossRefGoogle Scholar
  47. 47.
    Horiguchi J, Koibuchi Y, Iijima K et al (2005) Co-expressed type of ER and HER2 protein as a predictive factor in determining resistance to antiestrogen therapy in patients with ER-positive and HER2-positive breast cancer. Oncol Rep 14:1109–1116PubMedGoogle Scholar
  48. 48.
    Dowsett M, Harper-Wynne C, Boeddinghaus I et al (2001) HER-2 amplification impedes the antiproliferative effects of hormone therapy in estrogen receptor-positive primary breast cancer. Cancer Res 61:8452–8458PubMedGoogle Scholar
  49. 49.
    Osborne CK, Bardou V, Hopp TA et al (2003) Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J Natl Cancer Inst 95:353–361PubMedCrossRefGoogle Scholar
  50. 50.
    Schmid P, Wischnewsky MB, Sezer O et al (2002) Prediction of response to hormonal treatment in metastatic breast cancer. Oncology 63:309–316. doi: 10.1159/000066224 PubMedCrossRefGoogle Scholar
  51. 51.
    Arpino G, Weiss H, Lee AV et al (2005) Estrogen receptor-positive, progesterone receptor-negative breast cancer: association with growth factor receptor expression and tamoxifen resistance. J Natl Cancer Inst 97:1254–1261PubMedGoogle Scholar
  52. 52.
    Kun Y, How LC, Hoon TP et al (2003) Classifying the estrogen receptor status of breast cancers by expression profiles reveals a poor prognosis subpopulation exhibiting high expression of the ERBB2 receptor. Hum Mol Genet 12:3245–3258. doi: 10.1093/hmg/ddg347 PubMedCrossRefGoogle Scholar
  53. 53.
    Witton CJ, Reeves JR, Going JJ et al (2003) Expression of the HER1–4 family of receptor tyrosine kinases in breast cancer. J Pathol 200:290–297. doi: 10.1002/path.1370 PubMedCrossRefGoogle Scholar
  54. 54.
    Joensuu H, Isola J, Lundin M et al (2003) Amplification of erbB2 and erbB2 expression are superior to estrogen receptor status as risk factors for distant recurrence in pT1N0M0 breast cancer: a nationwide population-based study. Clin Cancer Res 9:923–930PubMedGoogle Scholar
  55. 55.
    Karrison TG, Ferguson DJ, Meier P (1999) Dormancy of mammary carcinoma after mastectomy. J Natl Cancer Inst 91:80–85. doi: 10.1093/jnci/91.1.80 PubMedCrossRefGoogle Scholar
  56. 56.
    Demicheli R, Abbattista A, Miceli R et al (1996) Time distribution of the recurrence risk for breast cancer patients undergoing mastectomy: further support about the concept of tumor dormancy. Breast Cancer Res Treat 41:177–185. doi: 10.1007/BF01807163 PubMedCrossRefGoogle Scholar
  57. 57.
    Demicheli R, Valagussa P, Bonadonna G (2002) Double-peaked time distribution of mortality for breast cancer patients undergoing mastectomy. Breast Cancer Res Treat 75:127–134. doi: 10.1023/A:1019659925311 PubMedCrossRefGoogle Scholar
  58. 58.
    Kilburn LS on behalf of the TNT Trial Management Group (2007) ‘Triple Negative’ Breast Cancer: a new area for Phase III breast cancer clinical trials. Clin Oncol (R Coll Radio) 20:35–39. doi: 10.1016/j.clon.2007.09.010

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Wen-Jin Yin
    • 1
    • 2
  • Jin-Song Lu
    • 1
    • 2
  • Gen-Hong Di
    • 1
    • 2
  • Yan-Ping Lin
    • 1
    • 2
  • Li-Heng Zhou
    • 1
    • 2
  • Guang-Yu Liu
    • 1
    • 2
  • Jiong Wu
    • 1
    • 2
  • Kun-Wei Shen
    • 1
    • 2
  • Qi-Xia Han
    • 1
    • 2
  • Zhen-Zhou Shen
    • 1
    • 2
  • Zhi-Ming Shao
    • 1
    • 2
  1. 1.Department of Breast Surgery, Breast Cancer InstituteCancer Hospital/Cancer Institute, Fudan UniversityShanghaiPeople’s Republic of China
  2. 2.Department of OncologyShanghai Medical College, Institutes of Biomedical Science, Fudan UniversityShanghaiPeople’s Republic of China

Personalised recommendations