Breast Cancer Research and Treatment

, Volume 115, Issue 1, pp 193–203 | Cite as

Overweight, obesity and breast cancer prognosis: optimal body size indicator cut-points

  • Bilal Majed
  • Thierry Moreau
  • Bernard Asselain
  • Curie Institute Breast Cancer Group
Epidemiology

Abstract

Background Evidence from the data provided in numerous published articles indicates that obesity and overweight can have a negative prognosis role in breast cancer. However, different Body Size Indicators (BSI) and cut-points have been employed and may partly explain discrepancies between the findings of various studies. Material and methods 14,709 women were recruited, treated and followed for a first unilateral breast cancer. After randomly splitting the patients’ data into two groups, a maximum statistical outcome approach was used to select optimal BSI cut-points from a “training sample”, when prognosis events were investigated. External validation was then carried out using a “validation sample”, and agreement between the selected optimal BSI cut-points was assessed. Body Mass Index (BMI), weight (W), Ideal Weight Ratio (IWR) and Body Surface Area (BSA) were used, and were assessed at the time of diagnosis. Results The selected optimal BSI cut-points were reliable when overall survival, metastasis recurrence and disease free interval events were investigated. The chosen BMI cut-point values matched the overweight cut-point value given by the World Health Organization. Agreement between defined binary BSI was acceptable; however, it varied from “fair” to “very good”. Analysis of second primary cancer occurrence and contralateral recurrence events was not conclusive. When local and node recurrence events were taken into account, the results were inconsistent and were linked to an unconfirmed relationship between stoutness and these prognosis events. Conclusions Efficient, optimal BSI cut-points indicate a poorer prognosis, illustrated by a shortened overall survival and an increase of metastasis recurrences, from a BMI value of 25 kg/m², a W value of 60 kg, an IWR value of 20% and a BSA value of 1.7 m². Further BSI cut-point investigations are needed, taking into account contralateral recurrence and second primary cancer events.

Keywords

Breast cancer Prognosis Body size indicators Cut-points External validation 

References

  1. 1.
    Rock CL, Demark-Wahnefried W (2002) Nutrition and survival after the diagnosis of breast cancer: a review of the evidence. J Clin Oncol 20(15):3302–3316. doi:10.1200/JCO.2002.03.008 PubMedCrossRefGoogle Scholar
  2. 2.
    Goodwin PJ, Boyd NF (1990) Body size and breast cancer prognosis: a critical review of the evidence. Breast Cancer Res Treat 16(3):205–214. doi:10.1007/BF01806329 PubMedCrossRefGoogle Scholar
  3. 3.
    Ryu SY, Kim CB, Nam CM, Park JK, Kim KS, Park J et al (2001) Is body mass index the prognostic factor in breast cancer? a meta-analysis. J Korean Med Sci 16(5):610–614PubMedGoogle Scholar
  4. 4.
    Carmichael AR, Bates T (2004) Obesity and breast cancer: a review of the literature. Breast 13(2):85–92. doi:10.1016/j.breast.2003.03.001 PubMedCrossRefGoogle Scholar
  5. 5.
    Majed B, Moreau T, Senouci K, Salmon RJ, Fourquet A, Asselain B (2007) Is obesity an independent prognosis factor in woman breast cancer? Breast Cancer Res TreatGoogle Scholar
  6. 6.
    (2000) Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser 894:i–xii, 1–253.Google Scholar
  7. 7.
    Gray DS, Fujioka K (1991) Use of relative weight and body mass index for the determination of adiposity. J Clin Epidemiol 44(6):545–550. doi:10.1016/0895-4356(91)90218-X PubMedCrossRefGoogle Scholar
  8. 8.
    Garrow JS, Webster J (1985) Quetelet’s index (W/H2) as a measure of fatness. Int J Obes 9(2):147–153PubMedGoogle Scholar
  9. 9.
    Frankenfield DC, Rowe WA, Cooney RN, Smith JS, Becker D (2001) Limits of body mass index to detect obesity and predict body composition. Nutrition 17(1):26–30. doi:10.1016/S0899-9007(00) 00471-8 PubMedCrossRefGoogle Scholar
  10. 10.
    Swinburn BA, Craig PL, Daniel R, Dent DP, Strauss BJ (1996) Body composition differences between Polynesians and Caucasians assessed by bioelectrical impedance. Int J Obes Relat Metab Disord 20(10):889–894PubMedGoogle Scholar
  11. 11.
    Stevens J, Juhaeri, Cai J, Jones DW (2002) The effect of decision rules on the choice of a body mass index cutoff for obesity: examples from African American and white women. Am J Clin Nutr 75(6):986–992Google Scholar
  12. 12.
    Boyd NF, Campbell JE, Germanson T, Thomson DB, Sutherland DJ, Meakin JW (1981) Body weight and prognosis in breast cancer. J Natl Cancer Inst 67(4):785–789PubMedGoogle Scholar
  13. 13.
    Borugian MJ, Sheps SB, Kim-Sing C, Olivotto IA, Van Patten C, Dunn BP et al (2003) Waist-to-hip ratio and breast cancer mortality. Am J Epidemiol 158(10):963–968. doi:10.1093/aje/kwg236 PubMedCrossRefGoogle Scholar
  14. 14.
    Donegan WL, Hartz AJ, Rimm AA (1978) The association of body weight with recurrent cancer of the breast. Cancer 41(4):1590–1594. doi:10.1002/1097-0142(197804)41:4≤1590::AID-CNCR2820410449≥3.0.CO;2-N -->Google Scholar
  15. 15.
    Enger SM, Greif JM, Polikoff J, Press M (2004) Body weight correlates with mortality in early-stage breast cancer. Arch Surg 139(9):954–958. doi:10.1001/archsurg.139.9.954 discussion 958–960PubMedCrossRefGoogle Scholar
  16. 16.
    Goodwin PJ, Ennis M, Pritchard KI, Trudeau ME, Koo J, Madarnas Y et al (2002) Fasting insulin and outcome in early-stage breast cancer: results of a prospective cohort study. J Clin Oncol 20(1):42–51. doi:10.1200/JCO.20.1.42 PubMedCrossRefGoogle Scholar
  17. 17.
    Hebert JR, Augustine A, Barone J, Kabat GC, Kinne DW, Wynder EL (1988) Weight, height and body mass index in the prognosis of breast cancer: early results of a prospective study. Int J Cancer 42(3):315–318. doi:10.1002/ijc.2910420302 PubMedCrossRefGoogle Scholar
  18. 18.
    Kyogoku S, Hirohata T, Takeshita S, Nomura Y, Shigematsu T, Horie A (1990) Survival of breast-cancer patients and body size indicators. Int J Cancer 46(5):824–831. doi:10.1002/ijc.2910460513 PubMedCrossRefGoogle Scholar
  19. 19.
    Mohle-Boetani JC, Grosser S, Whittemore AS, Malec M, Kampert JB, Paffenbarger RS Jr (1988) Body size, reproductive factors, and breast cancer survival. Prev Med 17(5):634–642. doi:10.1016/0091-7435(88) 90056-4 PubMedCrossRefGoogle Scholar
  20. 20.
    Bastarrachea J, Hortobagyi GN, Smith TL, Kau SW, Buzdar AU (1994) Obesity as an adverse prognostic factor for patients receiving adjuvant chemotherapy for breast cancer. Ann Intern Med 120(1):18–25PubMedGoogle Scholar
  21. 21.
    Senie RT, Rosen PP, Rhodes P, Lesser ML, Kinne DW (1992) Obesity at diagnosis of breast carcinoma influences duration of disease-free survival. Ann Intern Med 116(1):26–32PubMedGoogle Scholar
  22. 22.
    Suissa S, Pollak M, Spitzer WO, Margolese R (1989) Body size and breast cancer prognosis: a statistical explanation of the discrepancies. Cancer Res 49(11):3113–3116PubMedGoogle Scholar
  23. 23.
    Himes JH, Bouchard C, Pheley AM (1991) Lack of correspondence among measures identifying the obese. Am J Prev Med 7(2):107–111PubMedGoogle Scholar
  24. 24.
    Rock CL (2003) Diet and breast cancer: can dietary factors influence survival? J Mammary Gland Biol Neoplasia 8(1):119–132. doi:10.1023/A:1025791523375 PubMedCrossRefGoogle Scholar
  25. 25.
    Gehan EA, George SL (1970) Estimation of human body surface area from height and weight. Cancer Chemother Rep 54(4):225–235PubMedGoogle Scholar
  26. 26.
    Therneau TM, Grambsch PM (2000) Modeling Survival Data: Extending the Cox Model, 1st edn. Springer-VerlagGoogle Scholar
  27. 27.
    Collett D (2003) Modelling survival data in medical research, 2nd edn. Chapman & Hall/CRC, Boca Raton, FlaGoogle Scholar
  28. 28.
    Harrell FE (2001) Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. Springer, New YorkGoogle Scholar
  29. 29.
    Vittinghoff E (2005) Regression methods in biostatistics: linear, logistic, survival, and repeated measures models. Springer, New YorkGoogle Scholar
  30. 30.
    Harrell FE Jr, Califf RM, Pryor DB, Lee KL, Rosati RA (1982) Evaluating the yield of medical tests. JAMA 247(18):2543–2546. doi:10.1001/jama.247.18.2543 PubMedCrossRefGoogle Scholar
  31. 31.
    Pencina MJ, D’Agostino RB (2004) Overall C as a measure of discrimination in survival analysis: model specific population value and confidence interval estimation. Stat Med 23(13):2109–2123. doi:10.1002/sim.1802 PubMedCrossRefGoogle Scholar
  32. 32.
    Viera AJ, Garrett JM (2005) Understanding interobserver agreement: the kappa statistic. Fam Med 37(5):360–363PubMedGoogle Scholar
  33. 33.
    Rosner B (2000) Fundamentals of biostatistics, 5th edn. Duxbury, Pacific Grove, CAGoogle Scholar
  34. 34.
    Faraggi D, Simon R (1996) A simulation study of cross-validation for selecting an optimal cutpoint in univariate survival analysis. Stat Med 15(20):2203–2213. doi:10.1002/(SICI)1097-0258(19961030)15:20≤2203::AID-SIM357≥3.0.CO;2-GGoogle Scholar
  35. 35.
    Porter GA, Inglis KM, Wood LA, Veugelers PJ (2006) Effect of obesity on presentation of breast cancer. Ann Surg Oncol 13(3):327–332. doi:10.1245/ASO.2006.03.049 PubMedCrossRefGoogle Scholar
  36. 36.
    Carpenter CR (2005) Kappa statistic. CMAJ 173(1):15–16. doi:10.1503/cmaj.1041742 author reply 17PubMedGoogle Scholar
  37. 37.
    Dignam JJ, Wieand K, Johnson KA, Fisher B, Xu L, Mamounas EP (2003) Obesity, tamoxifen use, and outcomes in women with estrogen receptor-positive early-stage breast cancer. J Natl Cancer Inst 95(19):1467–1476PubMedGoogle Scholar
  38. 38.
    Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M (2008) Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371(9612):569–578. doi:10.1016/S0140-6736(08) 60269-X PubMedCrossRefGoogle Scholar
  39. 39.
    Hilsenbeck SG, Clark GM, McGuire WL (1992) Why do so many prognostic factors fail to pan out? Breast Cancer Res Treat 22(3):197–206. doi:10.1007/BF01840833 PubMedCrossRefGoogle Scholar
  40. 40.
    Abdolell M, LeBlanc M, Stephens D, Harrison RV (2002) Binary partitioning for continuous longitudinal data: categorizing a prognostic variable. Stat Med 21(22):3395–3409. doi:10.1002/sim.1266 PubMedCrossRefGoogle Scholar
  41. 41.
    Hollander N, Sauerbrei W, Schumacher M (2004) Confidence intervals for the effect of a prognostic factor after selection of an ‘optimal’ cutpoint. Stat Med 23(11):1701–1713. doi:10.1002/sim.1611 PubMedCrossRefGoogle Scholar
  42. 42.
    Hollander N, Schumacher M (2001) On the problem of using ‘optimal’ cutpoints in the assessment of quantitative prognostic factors. Onkologie 24(2):194–199. doi:10.1159/000050315 PubMedCrossRefGoogle Scholar
  43. 43.
    Mazumdar M, Smith A, Bacik J (2003) Methods for categorizing a prognostic variable in a multivariable setting. Stat Med 22(4):559–571. doi:10.1002/sim.1333 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Bilal Majed
    • 1
    • 2
  • Thierry Moreau
    • 3
  • Bernard Asselain
    • 1
    • 4
  • Curie Institute Breast Cancer Group
    • 4
  1. 1.Biostatistics DepartmentCurie Institute (cancer research and treatment institute)ParisFrance
  2. 2.ArrasFrance
  3. 3.INSERM UNIT 780: Epidemiology and biostatisticsPaul-Brousse HospitalVillejuif CedexFrance
  4. 4. Paris France

Personalised recommendations