Skip to main content

Advertisement

Log in

Dickkopf-1 mediated tumor suppression in human breast carcinoma cells

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Dickkopf-1 (DKK-1) is a secreted inhibitor of the Wnt signaling pathway. We previously identified DKK-1 as a candidate tumor suppressor and demonstrated that ectopic expression of the DKK-1 suppressed the tumorigenicity of HeLa cells in vitro and in vivo. Since suppression of tumorigenicity of HeLa cells by DKK-1 overexpression was not mediated by effects on β-catenin dependent transcription, we hypothesized that DKK-1 might also inhibit tumorigenicity of breast carcinoma cell lines lacking an activated canonical Wnt pathway. In the present study we show that ectopic expression of DKK-1 in various breast cancer cell lines resulted in a change in the cell phenotype, increased sensitivity to apoptosis, inhibition of anchorage independent growth in vitro, and suppression of tumorigenicity in vivo. Consistent with known effects of DKK-1 on the canonical Wnt signaling pathway, ectopic expression of DKK-1 in breast carcinoma cells was associated with increased phosphorylation and degradation of β-catenin. However, none of the breast tumor cells used in this study showed detectable levels of β-catenin dependent activation of TCF/Lef promoter activity measured by reporter constructs. Consistent with the results of these transient transfection assays, we were unable to demonstrate the expected β-catenin dependent, TCF/Lef mediated inhibition of cyclin D1 and c-myc gene transcription in breast cells overexpressing DKK-1. However, we found that cells with DKK-1 overexpression have increased activity of CamKII pathway. Overexpression of the constitutively active form of CamKII (T286D) resulted in inhibition of breast cancer cell tumorigenicity. Thus, our study supports the hypothesis that DKK-1 mediated tumor suppressor effect is independent of β-catenin dependent transcription and identified the CamKII pathway that contributes into DKK-1 signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fedi P, Bafico A, Nieto Soria A et al (1999) Isolation and biochemical characterization of the human Dkk-1 homologue, a novel inhibitor of mammalian Wnt signaling. J Biol Chem 274(27):19465–19472

    Article  PubMed  CAS  Google Scholar 

  2. Bafico A, Liu G, Yaniv A et al (2001) Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow. Nat Cell Biol 3(7):683–686

    Article  PubMed  CAS  Google Scholar 

  3. Mao B, Wu W, Davidson G et al (2002) Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling. Nature 417(6889):664–667

    Article  PubMed  CAS  Google Scholar 

  4. Mao B, Wu W, Li Y et al (2001) LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature 411(6835):321–325

    Article  PubMed  CAS  Google Scholar 

  5. Clevers H (2004) Wnt breakers in colon cancer. Cancer Cell 5(1):5–6

    Article  PubMed  CAS  Google Scholar 

  6. He X, Semenov M, Tamai K et al (2004) LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way. Development 131(8):1663–1677

    Article  PubMed  CAS  Google Scholar 

  7. Polakis P (2000) Wnt signaling and cancer. Genes Dev 14(15):1837–1851

    PubMed  CAS  Google Scholar 

  8. Satoh S, Daigo Y, Furukawa Y et al (2000) AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat Genet 24(3):245–250

    Article  PubMed  CAS  Google Scholar 

  9. Akiyama T (2000) Wnt/beta-catenin signaling. Cytokine Growth Factor Rev 11(4):273–282

    Article  PubMed  CAS  Google Scholar 

  10. Buendia MA (2000) Genetics of hepatocellular carcinoma. Semin Cancer Biol 10(3):185–200

    Article  PubMed  CAS  Google Scholar 

  11. Semba S, Yamakawa M, Sasano H (2001) The cadherin-catenin superfamily in endocrine tumors. Endocr Pathol 12(1):1–13

    Article  PubMed  CAS  Google Scholar 

  12. Candidus S, Bischoff P, Becker KF et al (1996) No evidence for mutations in the alpha- and beta-catenin genes in human gastric and breast carcinomas. Cancer Res 56(1):49–52

    PubMed  CAS  Google Scholar 

  13. Jonsson M, Borg A, Nilbert M et al (2000) Involvement of adenomatous polyposis coli (APC)/beta-catenin signalling in human breast cancer. Eur J Cancer 36(2):242–248

    Article  PubMed  CAS  Google Scholar 

  14. Schlosshauer PW, Brown SA, Eisinger K et al (2000) APC truncation and increased beta-catenin levels in a human breast cancer cell line. Carcinogenesis 21(7):1453–1456

    Article  PubMed  CAS  Google Scholar 

  15. Nusse R, Varmus HE (1982) Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31(1):99–109

    Article  PubMed  CAS  Google Scholar 

  16. Nusse R, Varmus HE (1992) Wnt genes. Cell 69(7):1073–1087

    Article  PubMed  CAS  Google Scholar 

  17. Chung GG, Zerkowski MP, Ocal IT et al (2004) Beta-catenin and p53 analyses of a breast carcinoma tissue microarray. Cancer 100(10):2084–2092

    Article  PubMed  CAS  Google Scholar 

  18. Lin SY, Xia W, Wang JC et al (2000) Beta-catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression. Proc Natl Acad Sci USA 97(8):4262–4266

    Article  PubMed  CAS  Google Scholar 

  19. Aguilera O, Fraga MF, Ballestar E et al (2006) Epigenetic inactivation of the Wnt antagonist DICKKOPF-1 (DKK-1) gene in human colorectal cancer. Oncogene 25(29):4116–4121

    Article  PubMed  CAS  Google Scholar 

  20. Bafico A, Liu G, Goldin L et al (2004) An autocrine mechanism for constitutive Wnt pathway activation in human cancer cells. Cancer Cell 6(5):497–506

    Article  PubMed  CAS  Google Scholar 

  21. Hoang BH, Kubo T, Healey JH et al (2004) Dickkopf 3 inhibits invasion and motility of Saos-2 osteosarcoma cells by modulating the Wnt-beta-catenin pathway. Cancer Res 64(8):2734–2739

    Article  PubMed  CAS  Google Scholar 

  22. Gonzalez-Sancho JM, Aguilera O, Garcia JM et al (2005) The Wnt antagonist DICKKOPF-1 gene is a downstream target of beta-catenin/TCF and is downregulated in human colon cancer. Oncogene 24(6):1098–1103

    Article  PubMed  CAS  Google Scholar 

  23. Kobayashi K, Ouchida M, Tsuji T et al (2002) Reduced expression of the REIC/Dkk-3 gene by promoter-hypermethylation in human tumor cells. Gene 282(1–2):151–158

    Article  PubMed  CAS  Google Scholar 

  24. Kuphal S, Lodermeyer S, Bataille F et al (2006) Expression of Dickkopf genes is strongly reduced in malignant melanoma. Oncogene 25(36):5027–5036

    Article  PubMed  CAS  Google Scholar 

  25. Yamaguchi Y, Itami S, Watabe H et al (2004) Mesenchymal–epithelial interactions in the skin: increased expression of dickkopf1 by palmoplantar fibroblasts inhibits melanocyte growth and differentiation. J Cell Biol 165(2):275–285

    Article  PubMed  CAS  Google Scholar 

  26. Lee AY, He B, You L et al (2004) Dickkopf-1 antagonizes Wnt signaling independent of beta-catenin in human mesothelioma. Biochem Biophys Res Commun 323(4):1246–1250

    Article  PubMed  CAS  Google Scholar 

  27. Mikheev AM, Mikheeva SA, Liu B et al (2004) A functional genomics approach for the identification of putative tumor suppressor genes: Dickkopf-1 as suppressor of HeLa cell transformation. Carcinogenesis 25(1):47–59

    Article  PubMed  CAS  Google Scholar 

  28. Ishitani T, Kishida S, Hyodo-Miura J et al (2003) The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca(2+) pathway to antagonize Wnt/beta-catenin signaling. Mol Cell Biol 23(1):131–139

    Article  PubMed  CAS  Google Scholar 

  29. Chan TA, Wang Z, Dang LH et al (2002) Targeted inactivation of CTNNB1 reveals unexpected effects of beta-catenin mutation. Proc Natl Acad Sci USA 99(12):8265–8270

    Article  PubMed  CAS  Google Scholar 

  30. Fan S, Smith ML, Rivet DJ 2nd et al (1995) Disruption of p53 function sensitizes breast cancer MCF-7 cells to cisplatin and pentoxifylline. Cancer Res 55(8):1649–1654

    Google Scholar 

  31. Morvan F, Boulukos K, Clement-Lacroix P et al (2006) Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Mineral Res 21(6):934–945

    Article  CAS  Google Scholar 

  32. Mikheev AM, Mikheeva SA, Rostomily R et al (2007) Dickkopf-1 activates cell death in MDA-MB435 melanoma cells. Biochem Biophys Res Commun 352(3):675–680

    Article  PubMed  CAS  Google Scholar 

  33. Wang J, Shou J, Chen X (2000) Dickkopf-1, an inhibitor of the Wnt signaling pathway, is induced by p53. Oncogene 19(14):1843–1848

    Article  PubMed  CAS  Google Scholar 

  34. Karim R, Tse G, Putti T et al (2004) The significance of the Wnt pathway in the pathology of human cancers. Pathology 36(2):120–128

    Article  PubMed  CAS  Google Scholar 

  35. Kirikoshi H, Katoh M (2002) Expression of WNT7A in human normal tissues and cancer, and regulation of WNT7A and WNT7B in human cancer. Int J Oncol 21(4):895–900

    PubMed  CAS  Google Scholar 

  36. Kirikoshi H, Katoh M (2002) Expression and regulation of WNT10B in human cancer: up-regulation of WNT10B in MCF-7 cells by beta-estradiol and down-regulation of WNT10B in NT2 cells by retinoic acid. Int J Mol Med 10(4):507–511

    PubMed  CAS  Google Scholar 

  37. van de Wetering M, Barker N, Harkes IC et al (2001) Mutant E-cadherin breast cancer cells do not display constitutive Wnt signaling. Cancer Res 61(1):278–284

    PubMed  Google Scholar 

  38. Pukrop T, Klemm F, Hagemann T et al (2006) Wnt 5a signaling is critical for macrophage-induced invasion of breast cancer cell lines. Proc Natl Acad Sci USA 103(14):5454–5459

    Article  PubMed  CAS  Google Scholar 

  39. Kuhl M (2004) The WNT/calcium pathway: biochemical mediators, tools and future requirements. Front Biosci 9:967–974

    Article  PubMed  Google Scholar 

  40. Kremenevskaja N, von Wasielewski R, Rao AS et al (2005) Wnt-5a has tumor suppressor activity in thyroid carcinoma. Oncogene 24(13):2144–2154

    Article  PubMed  CAS  Google Scholar 

  41. Topol L, Jiang X, Choi H et al (2003) Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent beta-catenin degradation. J Cell Biol 162(5):899–908

    Article  PubMed  CAS  Google Scholar 

  42. Ouko L, Ziegler TR, Gu LH et al (2004) Wnt11 signaling promotes proliferation, transformation, and migration of IEC6 intestinal epithelial cells. J Biol Chem 279(25):26707–26715

    Article  PubMed  CAS  Google Scholar 

  43. Weeraratna AT, Jiang Y, Hostetter G et al (2002) Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell 1(3):279–288

    Article  PubMed  CAS  Google Scholar 

  44. Shulewitz M, Soloviev I, Wu T et al (2006) Repressor roles for TCF-4 and Sfrp1 in Wnt signaling in breast cancer. Oncogene 25(31):4361–4369

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Randall Moon for valuable discussion. This research was supported by Public Health Services, with NIH grants to the NIEHS sponsored FHCRC/UW Toxicogenomics Research Consortium, Grant # NIEHS U19ES011387, and the NIEHS sponsored UW Center for Ecogenetics and Environmental Health, Grant #: NIEHS P30ES07033, by an IDEA grant from the U.S. Army Medical Research and Materiel Command, Grant # DAMD17-98-1-8086 and NIH/NINDS training grant NS0007144. J.V.R. is supported by the University of Washington Anesthesiology Departmental Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei M. Mikheev.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 131 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikheev, A.M., Mikheeva, S.A., Maxwell, JP. et al. Dickkopf-1 mediated tumor suppression in human breast carcinoma cells. Breast Cancer Res Treat 112, 263–273 (2008). https://doi.org/10.1007/s10549-007-9867-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-007-9867-2

Keywords

Navigation