Breast Cancer Research and Treatment

, Volume 112, Issue 1, pp 175–187 | Cite as

Economic evaluation of 21-gene reverse transcriptase-polymerase chain reaction assay in lymph-node-negative, estrogen-receptor-positive, early-stage breast cancer in Japan

  • Masahide Kondo
  • Shu Ling Hoshi
  • Hiroshi Ishiguro
  • Hiroshi Yoshibayashi
  • Masakazu Toi


The 21-gene reverse transcriptase-polymerase chain reaction assay with a patented algorithm is validated as a good predictor of prognosis and potential benefit from adjuvant chemotherapy for lymph-node-negative, estrogen-receptor-positive, early-stage breast cancer, while its high cost raises concern about how to finance it. Cost-effectiveness analysis comparing prevalent National Comprehensive Cancer Network (NCCN) guideline/St Gallen recommendation-guided treatment with the assay-guided treatment is carried out with budget impact estimation in the context of Japan’s health care system. Incremental cost-effectiveness ratios are estimated as 2,997,495 ¥/QALY (26,065 US$/QALY) in the comparison between NCCN guided-treatment vs. the assay-guided treatment, and as 1,239,055 ¥/QALY (10,774 US$/QALY) in the comparison between St Gallen guided-treatment vs. the assay-guided treatment. Budget impact is estimated as ¥2,638 million (US$23 million) to ¥3,225 million (US$28 million) per year. The routine use of the assay is indicated as cost-effective. And the budget impact could be judged as within fundable level.


Breast cancer Budget impact Cost-effectiveness Gene diagnosis 21-gene signature Tailor-made medicine 



This study is funded by Japan’s Ministry of Health, Labour and Welfare research grant, a study on the construction of algorithm of multimodality therapy with biomarkers for primary breast cancer by a formulation of decision making process, led by Masakazu Toi (H18-3JIGAN-IPPAN-007, H19-3JIGAN-IPPAN-007). Authors appreciate Dr Hiroji Iwata at Aichi Cancer Center for providing his survey data.


  1. 1.
    Kondo M, Toi M (2006) Cost-effective treatment options in first-line therapy for advanced breast cancer in Japan. Expert Rev Anticancer Ther 6(2):197–204PubMedCrossRefGoogle Scholar
  2. 2.
    Miya T (2007) Current status and problems of tailor-made medicine in anticancer therapy. Gan To Kagaku Ryoho 34(4):515–519PubMedGoogle Scholar
  3. 3.
    Goldhirsch A, Wood WC, Gelber RD et al (2003) Meeting highlights: updated international expert consensus on the primary therapy of early breast cancer. J Clin Oncol 21(17):3357–3365PubMedCrossRefGoogle Scholar
  4. 4.
    Senn HJ, Thürlimann B, Goldhirsch A et al (2003) Comments on the St. Gallen consensus 2003 on the primary therapy of early breast cancer. Breast 12(6):569–582PubMedCrossRefGoogle Scholar
  5. 5.
    Goldhirsch A, Glick JH, Gelber RD et al (2005) Meeting highlights: international expert consensus on the primary therapy of early breast cancer 2005. Ann Oncol 16(10):1569–1583PubMedCrossRefGoogle Scholar
  6. 6.
    Goldhirsch A, Coates AS, Gelber RD et al (2006) First – select the target: better choice of adjuvant treatments for breast cancer patients. Ann Oncol 17(12):1772–1776PubMedCrossRefGoogle Scholar
  7. 7.
    Early Breast Cancer Trialists’ Collaborative Group (2001) Tamoxifen for early breast cancer. Cochrane Database Syst Rev 2001(1):CD000486Google Scholar
  8. 8.
    Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365(9472):1687–1717CrossRefGoogle Scholar
  9. 9.
    Carlson RW, McCormick B (2005) Update: NCCN breast cancer clinical practice guidelines. J Natl Compr Canc Netw 3(Suppl 1):S7–S11PubMedGoogle Scholar
  10. 10.
    Carlson RW, Brown E, Burstein HJ et al (2006) NCCN task force report: adjuvant therapy for breast cancer. J Natl Compr Canc Netw 4(Suppl 1):S1–S26Google Scholar
  11. 11.
    Carlson RW, Hudis CA, Pritchard KI et al (2006) Adjuvant endocrine therapy in hormone receptor-positive postmenopausal breast cancer: evolution of NCCN, ASCO, and St Gallen recommendations. J Natl Compr Canc Netw 4(10):971–979PubMedGoogle Scholar
  12. 12.
    Paik S, Shak S, Tang G et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351(27):2817–2826PubMedCrossRefGoogle Scholar
  13. 13.
    Paik S, Tang G, Shak S et al (2006) Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol 24(23):3726–3734PubMedCrossRefGoogle Scholar
  14. 14.
    Lacal JC (2007) How molecular biology can improve clinical management: the MammaPrint experience. Clin Transl Oncol 9(4):203PubMedCrossRefGoogle Scholar
  15. 15.
    Drummond MF, Sculpher MJ, Torrance GW et al (2005) Methods for the economic evaluation of health care, 3rd edn. Oxford University Press, OxfordGoogle Scholar
  16. 16.
    The Japanese Breast Cancer Society (2007) Zenkoku nyugan kanja touroku chousa houkoku – kakuteiban—dai 35 gou 2004 nenji shourei (National breast cancer patient registry survey report – final report—No. 35 2004 cases). The Japanese Breast Cancer Society, TokyoGoogle Scholar
  17. 17.
    Ohno Y, Nakamura T, Murata K et al (2004) Nihon no ganrikan no shoraisuikei – Bayes gata Poisson cohort model niyoru kaiseki ni motozuku 2020 nen madeno yosoku – (Future estimate of cancer incidence in Japan – Bayesian Poisson cohort model estimate until 2020). In: Oshima A, Ishiguro A, Tajima K (eds) Gan toukei hakusho – rikan, shibo, yogo – 2004 (Cancer statistics white paper – incidence, mortality, prognosis – 2004). Shinohara Shuppan Shinsha, TokyoGoogle Scholar
  18. 18.
    van Oostenbruggen MF, Jansen RB, Mur K, Kooijman H (2005) Penny and pound wise: pharmacoeconomics from a governmental perspective. Pharmacoeconomics 23(3):219–226PubMedCrossRefGoogle Scholar
  19. 19.
    Hornberger J, Cosler LE, Lyman GH (2005) Economic analysis of targeting chemotherapy using a 21-gene RT-PCR assay in lymph-node-negative, estrogen-receptor-positive, early-stage breast cancer. Am J Manag Care 11(5):313–324. Erratum in: Am J Manag Care 11(8):476Google Scholar
  20. 20.
    Lyman GH, Cosler LE, Kuderer NM et al (2007) Impact of a 21-gene RT-PCR assay on treatment decisions in early-stage breast cancer: an economic analysis based on prognostic and predictive validation studies. Cancer 109(6):1011–1018PubMedCrossRefGoogle Scholar
  21. 21.
    Paik S, Shak S, Tang G et al (2004) Risk classification of breast cancer patients by the recurrence score assay: comparison to guidelines based on patient age, tumor size, and tumor grade. In: Abstracts of 27th annual San Antonio breast cancer symposium, Texas, 8–11 December 2004Google Scholar
  22. 22.
    Iwata H, Saeki T (2006) Current practices in breast cancer treatment in Japan – a questionnaire survey. Jpn J Breast Cancer 21(3):311–322Google Scholar
  23. 23.
    Japan Society of Clinical Oncology (2005) Kouganzai tekiseishiyou no gaidorain: nyuugan (Guideline of appropriate use of anti cancer drugs: breast cancer). Int J Clin Oncol 10(Suppl.):15–55Google Scholar
  24. 24.
    Japanese Breast Cancer Society (2006) Kagakuteki konkyo ni motozuku nyuugan sinryo gaidorain: 1 yakubutsu ryouhou 2006 nenban (Evidence-based breast cancer care guideline: 1 drug treatments 2006 version). Kanehara Shuppan, TokyoGoogle Scholar
  25. 25.
    Piccart-Gebhart MJ, Procter M, Leyland-Jones B et al (2005) Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353(16):1659–1672PubMedCrossRefGoogle Scholar
  26. 26.
    Smith I, Procter M, Gelber RD et al (2007) 2-year follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer: a randomised controlled trial. Lancet 369(9555):29–36PubMedCrossRefGoogle Scholar
  27. 27.
    Elkin EB, Weinstein MC, Winer EP et al (2004) HER-2 testing and trastuzumab therapy for metastatic breast cancer: a cost-effectiveness analysis. J Clin Oncol 22(5):854–863PubMedCrossRefGoogle Scholar
  28. 28.
    Ministry of Health, Labour, Welfare (2007) The 20th life tables. Health and Welfare Statistics Association, TokyoGoogle Scholar
  29. 29.
    Hillner BE, Smith TJ (1991) Efficacy and cost effectiveness of adjuvant chemotherapy in women with node-negative breast cancer. A decision-analysis model. N Engl J Med 324(3):160–168PubMedCrossRefGoogle Scholar
  30. 30.
    Earle CC, Chapman RH, Baker CS et al (2000) Systematic overview of cost-utility assessments in oncology. J Clin Oncol 18(18):3302–3331PubMedGoogle Scholar
  31. 31.
    Cole BF, Gelber RD, Gelber S et al (2001) Polychemotherapy for early breast cancer: an overview of the randomised clinical trials with quality-adjusted survival analysis. Lancet 358(9278):277–286PubMedCrossRefGoogle Scholar
  32. 32.
    Gold MR, Siegel JE, Russell LB et al (eds) Cost-effectiveness in health and medicine. Oxford University Press, New YorkGoogle Scholar
  33. 33.
    Iwata H, Nakamura S, Toi M et al (2005) Interim analysis of a phase II trial of cyclophosphamide, epirubicin and 5-fluorouracil (CEF) followed by docetaxel as preoperative chemotherapy for early stage breast carcinoma. Breast Cancer 12(2):99–103PubMedCrossRefGoogle Scholar
  34. 34.
    Papaldo P, Ferretti G, Di Cosimo S et al (2006) Does granulocyte colony-stimulating factor worsen anemia in early breast cancer patients treated with epirubicin and cyclophosphamide? J Clin Oncol 24(19):3048–3055PubMedCrossRefGoogle Scholar
  35. 35.
    Culyer AJ (2005) The dictionary of health economics. Edward Elgar, CheltenhamGoogle Scholar
  36. 36.
    Ohkusa Y (2003) Empirical research for the critical value of expenditure per QALY. Iryou to Shakai 13(3):121–130Google Scholar
  37. 37.
    Trueman P, Drummond M, Hutton J (2001) Developing guidance for budget impact analysis. Pharmacoeconomics 19(6):609–621PubMedCrossRefGoogle Scholar
  38. 38.
    Shiroiwa T, Fukuda T, Shimozuma K et al (2007) The model-based cost-effectiveness analysis of 1-year adjuvant trastuzumab treatment: based on 2-year follow-up HERA trial data. Breast Cancer Res Treat (in press). doi: 10.1007/s10549-007-9679-4
  39. 39.
    Drummond M, Pang F (2001) Transferability of economic evaluation results. In: Drummond M, McGuire A (eds) Economic evaluation in health care: merging theory with practice. Oxford University Press, OxfordGoogle Scholar
  40. 40.
    Toi M (2007) Update on the confirmatory Japanese study utilizing Oncotype DX. In: Abstracts of the 15th annual meeting of the Japanese breast cancer society, Kanagawa, 29–30 June 2007Google Scholar
  41. 41.
    Goldhirsch A, Wood W, Gelber R et al (2007) Progress and promise: highlights of the international expert consensus on the primary therapy of early breast cancer 2007. Ann Oncol 18(7):1133–1144PubMedCrossRefGoogle Scholar
  42. 42.
    Lo SS, Norton J, Mumby PB et al (2007) Prospective multicenter study of the impact of the 21-gene recurrence score (RS) assay on medical oncologist (MO) and patient (pt) adjuvant breast cancer (BC) treatment selection. J Clin Oncol 25(18S):577Google Scholar
  43. 43.
    Goldstein LJ, Gray R, Childs BH et al (2007) Prognostic utility of 21-gene assay in hormone receptor (HR) positive operable breast cancer and 0–3 positive axillary nodes treated with adjuvant chemohormonal therapy (CHT): an analysis of intergroup Trial E2197. J Clin Oncol 25(18S):526Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  • Masahide Kondo
    • 1
    • 2
  • Shu Ling Hoshi
    • 3
  • Hiroshi Ishiguro
    • 4
  • Hiroshi Yoshibayashi
    • 5
  • Masakazu Toi
    • 5
  1. 1.Department of Health Care Policy and Management, Graduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
  2. 2.Clinical Research DivisionTokyo Metropolitan Cancer and Infectious Disease Center, Komagome HospitalTokyoJapan
  3. 3.Doctoral Program in Human-Care Sciences, Graduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
  4. 4.Department of Translational Clinical Oncology, Graduate School of MedicineKyoto UniversityKyotoJapan
  5. 5.Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan

Personalised recommendations