Breast Cancer Research and Treatment

, Volume 111, Issue 3, pp 449–452 | Cite as

A polymorphism in the G protein β3-subunit gene is associated with bone metastasis risk in breast cancer patients

  • H. Clar
  • U. Langsenlehner
  • P. Krippl
  • W. Renner
  • A. Leithner
  • G. Gruber
  • G. Hofmann
  • B. Yazdani-Biuki
  • T. Langsenlehner
  • R. Windhager
Preclinical Study

Abstract

Breast cancer is the most frequently diagnosed cancer among women in western countries and bone metastases of breast cancer cause significant morbidity. G proteins are important components of a multitude of transmembrane receptors and are involved in the regulation of intracellular signaling pathways such as parathormone receptors 1 and 2 (PTH1 and 2), extracellular calcium-sensing receptor, the calcitonin receptor and the OPG/RANKL-system. A common polymorphism in the gene encoding the G protein β3-subunit, GNB3 825C > T, has been linked to increased G protein activation. To analyse the role of this polymorphism in bone metastasis of breast cancer, we determined GNB3 825C > T genotypes in 500 female breast cancer patients. According to breast cancer staging, patients were divided in three groups, representing patients without metastases (n = 250), those with metastases other than bone (n = 117), and those with bone metastasis (n = 133). Frequency of the GNB3 825 TT genotype was significantly lower among patients with bone metastases (3.1%) than among those with other metastases (12.8%; P = 0.004) or no metastases (13.3%; P < 0.001). In a Cox regression analysis, relative risk of the GNB3 TT genotype for bone metastasis was 0.22 (95% CI 0.08–0.61; P = 0.004) for bone metastasis. We conclude that the homozygous GNB3 825 TT genotype may be protective against development of bone metastasis in breast cancer patients. The precise mechanism for this remains to be determined, but could be due to a direct involvement of G protein-coupled receptors in bone metabolism.

Keywords

Breast cancer Bone metastases GNB3 Gene polymorphism 

References

  1. 1.
    Greenlee RT, Murray T, Bolden S, Wingo PA (2000) Cancer statistics, 2000. CA Cancer J Clin 50(1):7–33PubMedCrossRefGoogle Scholar
  2. 2.
    Ries LAG, Kosary CL, Hankey BF et al (eds) (1999) SEER cancer statistics review, 1973–1996, National Cancer Institute, Bethesda, MDGoogle Scholar
  3. 3.
    McPherson K, Steel CM, Dixon JM (2000) ABC of breast cancer epidemiology, risk factors and genetics. BMJ 321:624–628PubMedCrossRefGoogle Scholar
  4. 4.
    Kozlow W, Guise TA (2005) Breast cancer metastasis to bone: mechanisms of osteolysis and implications for therapy. J Mammary Gland Biol Neoplasia 10(2):169–180PubMedCrossRefGoogle Scholar
  5. 5.
    Clines GA, Guise TA (2005) Hypercalcaemia of malignancy and basic research on mechanisms responsible for osteolytic and osteoblastic metastasis to bone. Endocr Relat Cancer 12(3):549–583PubMedCrossRefGoogle Scholar
  6. 6.
    Harrington KD (1997) Orthopedic surgical management of skeletal complications of malignancy. Cancer 80(8 Suppl.):1614–1627PubMedCrossRefGoogle Scholar
  7. 7.
    McCudden CR, Hains MD, Kimple RJ et al (2005) G-protein signalling: back to the future. Cell Mol Life Sci 62(5):551–577PubMedCrossRefGoogle Scholar
  8. 8.
    Hebert SC (2006) Therapeutic use of calcimimetics. Annu Rev Med 57:349–364PubMedCrossRefGoogle Scholar
  9. 9.
    Hoare SR (2005) Mechanisms of peptide and nonpeptide ligand binding to Class B G-protein-coupled receptors. Drug Discov Today 10(6):417–427PubMedCrossRefGoogle Scholar
  10. 10.
    Blair JM, Zhou H, Seibel MJ, Dunstan CR (2006) Mechanisms of disease: roles of OPG, RANKL and RANK in the pathophysiology of skeletal metastasis. Nat Clin Pract Oncol 3(1):41–49PubMedCrossRefGoogle Scholar
  11. 11.
    Guise TA, Kozlow WM, Heras-Herzig A et al (2005) Molecular mechanisms of breast cancer metastases to bone. Clin Breast Cancer 5(Suppl. 2):S46–53PubMedCrossRefGoogle Scholar
  12. 12.
    Bendre M, Gaddy D, Nicholas RW, Suva LJ (2003) Breast cancer metastasis to bone: it is not all about PTHrP. Clin Orthop Relat Res 415(Suppl.):S39–45PubMedCrossRefGoogle Scholar
  13. 13.
    Abramow-Newerly M, Roy AA, Nunn C, Chidiac P (2006) RGS proteins have a signalling complex: interactions between RGS proteins and GPCRs, effectors, and auxiliary proteins. Cell Signal 18(5):579–591PubMedCrossRefGoogle Scholar
  14. 14.
    Peri S, Navarro JD, Amanchy R et al (2003) Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res 13:2363–2371PubMedCrossRefGoogle Scholar
  15. 15.
    Siffert W, Rosskopf D, Siffert G et al (1998) Association of a human G-protein beta3 subunit variant with hypertension. Nat Genet 18:45–48PubMedCrossRefGoogle Scholar
  16. 16.
    Eisenhardt A, Siffert W, Rosskopf D et al (2005) Association study of the G-protein beta3 subunit C825T polymorphism with disease progression in patients with bladder cancer. World J Urol 3(4):279–286CrossRefGoogle Scholar
  17. 17.
    Sheu SY, Gorges R, Ensinger C et al (2005). Different genotype distribution of the GNB3 C825T polymorphism of the G protein beta3 subunit in adenomas and differentiated thyroid carcinomas of follicular cell origin. J Pathol 207(4):430–435PubMedCrossRefGoogle Scholar
  18. 18.
    Ofner D, Zitt M, Menzel H et al (2002) The 825C allele of the gene GNB3 encoding the G-protein-3 subunit is associated with an increased risk for developing colorectal cancer. Eur J Hum Genet 10:105Google Scholar
  19. 19.
    Nuckel H, Frey U, Aralh N et al (2003) The CC genotype of the C825T polymorphism of the G protein beta3 gene (GNB3) is associated with a high relapse rate in patients with chronic lymphocytic leukaemia. Leuk Lymphoma 44(10):1739–1743PubMedCrossRefGoogle Scholar
  20. 20.
    Krippl P, Langsenlehner U, Renner W et al (2004). The 825C > T polymorphism of the G-protein beta-3 subunit gene (GNB3) and breast cancer. Cancer Lett 206(1):59–62PubMedCrossRefGoogle Scholar
  21. 21.
    Hortobagyi GN (2005) Moving into the future: treatment of bone metastases and beyond. Cancer Treat Rev 31(Suppl 3):9–18PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  • H. Clar
    • 1
  • U. Langsenlehner
    • 2
  • P. Krippl
    • 2
  • W. Renner
    • 3
  • A. Leithner
    • 1
  • G. Gruber
    • 1
  • G. Hofmann
    • 4
  • B. Yazdani-Biuki
    • 5
  • T. Langsenlehner
    • 6
  • R. Windhager
    • 1
  1. 1.Department of Orthopaedic SurgeryMedical University of GrazGrazAustria
  2. 2.Division of OncologyGeneral Hospital FürstenfeldFüstenfeldAustria
  3. 3.Clinical Institute for Medical and Chemical Laboratory DiagnosisMedical University of GrazGrazAustria
  4. 4.Department of Internal Medicine, Division of OncologyMedical University of GrazGrazAustria
  5. 5.Department of Internal Medicine, Division of RheumatologyMedical University of Graz GrazAustria
  6. 6.Department of Therapeutic Radiology and OncologyMedical University of GrazGrazAustria

Personalised recommendations