Breast Cancer Research and Treatment

, Volume 111, Issue 1, pp 103–111 | Cite as

MAZ drives tumor-specific expression of PPAR gamma 1 in breast cancer cells

  • Xin Wang
  • R. Chase Southard
  • Clinton D. Allred
  • Dominique R. Talbert
  • Melinda E. Wilson
  • Michael W. Kilgore
Preclinical Study

Abstract

The peroxisome proliferator-activated receptor gamma 1 (PPARγ1) is a nuclear receptor that plays a pivotal role in breast cancer and is highly over-expressed relative to normal epithelia. We have previously reported that the expression of PPARγ1 is mediated by at least six distinct promoters and expression in breast cancer is driven by a tumor-specific promoter (pA1). Deletional analysis of this promoter fragment revealed that the GC-rich, 263 bp sequence proximal to the start of exon A1, is sufficient to drive expression in breast cancer cells but not in normal, human mammary epithelial cells (HMEC). By combining the disparate technologies of microarray and computer-based transcription factor binding site analyses on this promoter sequence the myc-associated zinc finger protein (MAZ) was identified as a candidate transcription factor mediating tumor-specific expression. Western blot analysis and chromatin immunoprecipitation assays verify that MAZ is overexpressed in MCF-7 cells and is capable of binding to the 263 bp promoter fragment, respectively. Furthermore, the over-expression of MAZ in HMEC is sufficient to drive the expression of PPARγ1 and does so by recruiting the tumor-specific promoter. This results in an increase in the amount of PPARγ1 capable of binding to its DNA response element. These findings help to define the molecular mechanism driving the high expression of PPARγ1 in breast cancer and raise new questions regarding the role of MAZ in cancer progression.

Keywords

PPARγ1 peroxisome proliferator activated receptor gamma Breast cancer HMEC MAZ Myc-associated Zinc finger protein MCF-1 

References

  1. 1.
    American Cancer Society (2007) Cancer facts & figures 2007. American Cancer Society, AtlantaGoogle Scholar
  2. 2.
    Harris JR, Lippman ME, Veronesi U, Willett W (1992) Breast cancer (3). N Engl J Med 327(7):473–480PubMedCrossRefGoogle Scholar
  3. 3.
    Kilgore MW, Tate PL, Rai S, Sengoku E, Price TM (1997) MCF-7 and T47D human breast cancer cells contain a functional peroxisomal response. Mol Cell Endocrinol 129(2):229–235PubMedCrossRefGoogle Scholar
  4. 4.
    Kliewer SA, Forman BM, Blumberg B, Ong ES, Borgmeyer U, Mangelsdorf DJ et al (1994) Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc Natl Acad Sci USA 91(15):7355–7359PubMedCrossRefGoogle Scholar
  5. 5.
    Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM (1994) mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 8(10):1224–1234PubMedCrossRefGoogle Scholar
  6. 6.
    Elstner E, Muller C, Koshizuka K, Williamson EA, Park D, Asou H et al (1998) Ligands for peroxisome proliferator-activated receptorgamma and retinoic acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice. Proc Natl Acad Sci USA 95(15):8806–8811PubMedCrossRefGoogle Scholar
  7. 7.
    Yee LD, Guo Y, Bradbury J, Suster S, Clinton SK, Seewaldt VL (2003) The antiproliferative effects of PPARgamma ligands in normal human mammary epithelial cells. Breast Cancer Res Treat 78(2):179–192PubMedCrossRefGoogle Scholar
  8. 8.
    Mueller E, Smith M, Sarraf P, Kroll T, Aiyer A, Kaufman DS et al (2000) Effects of ligand activation of peroxisome proliferator-activated receptor gamma in human prostate cancer. Proc Natl Acad Sci USA 97(20):10990–10995PubMedCrossRefGoogle Scholar
  9. 9.
    Zhu Y, Alvares K, Huang Q, Rao MS, Reddy JK (1993) Cloning of a new member of the peroxisome proliferator-activated receptor gene family from mouse liver. J Biol Chem 268(36):26817–26820PubMedGoogle Scholar
  10. 10.
    Girard J (2002) [PPARgamma and insulin resistance]. Ann Endocrinol (Paris) 63(2 Pt 2):1S19–1S22Google Scholar
  11. 11.
    Barak Y, Nelson MC, Ong ES, Jones YZ, Ruiz-Lozano P, Chien KR et al (1999) PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell 4(4):585–595PubMedCrossRefGoogle Scholar
  12. 12.
    Forman BM, Tontonoz P, Chen J, Brun RP, Spiegelman BM, Evans RM (1995) 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 83(5):803–812PubMedCrossRefGoogle Scholar
  13. 13.
    Kliewer SA, Lenhard JM, Willson TM, Patel I, Morris DC, Lehmann JM (1995) A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell 83(5):813–819PubMedCrossRefGoogle Scholar
  14. 14.
    Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, Koble CS et al (1997) Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci USA 94(9):4318–4323PubMedCrossRefGoogle Scholar
  15. 15.
    Thoennes SR, Tate PL, Price TM, Kilgore MW (2000) Differential transcriptional activation of peroxisome proliferator-activated receptor gamma by omega-3 and omega-6 fatty acids in MCF-7 cells. Mol Cell Endocrinol 160(1–2):67–73PubMedCrossRefGoogle Scholar
  16. 16.
    Fajas L, Auboeuf D, Raspe E, Schoonjans K, Lefebvre AM, Saladin R et al (1997) The organization, promoter analysis, and expression of the human PPARgamma gene. J Biol Chem 272(30):18779–18789PubMedCrossRefGoogle Scholar
  17. 17.
    Wang X, Southard RC, Kilgore MW (2004) The increased expression of peroxisome proliferator-activated receptor-gamma1 in human breast cancer is mediated by selective promoter usage. Cancer Res 64(16):5592–5596PubMedCrossRefGoogle Scholar
  18. 18.
    Allred CD, Kilgore MW (2005) Selective activation of PPARgamma in breast, colon, and lung cancer cell lines. Mol Cell Endocrinol 235(1–2):21–29PubMedCrossRefGoogle Scholar
  19. 19.
    Saez E, Tontonoz P, Nelson MC, Alvarez JG, Ming UT, Baird SM et al (1998) Activators of the nuclear receptor PPARgamma enhance colon polyp formation. Nat Med 4(9):1058–1061PubMedCrossRefGoogle Scholar
  20. 20.
    Sato H, Ishihara S, Kawashima K, Moriyama N, Suetsugu H, Kazumori H et al (2000) Expression of peroxisome proliferator-activated receptor (PPAR)gamma in gastric cancer and inhibitory effects of PPARgamma agonists. Br J Cancer 83(10):1394–1400PubMedCrossRefGoogle Scholar
  21. 21.
    Inoue K, Kawahito Y, Tsubouchi Y, Yamada R, Kohno M, Hosokawa Y et al (2001) Expression of peroxisome proliferator-activated receptor (PPAR)-gamma in human lung cancer. Anticancer Res 21(4A):2471–2476PubMedGoogle Scholar
  22. 22.
    Shappell SB, Gupta RA, Manning S, Whitehead R, Boeglin WE, Schneider C et al (2001) 15S-Hydroxyeicosatetraenoic acid activates peroxisome proliferator-activated receptor gamma and inhibits proliferation in PC3 prostate carcinoma cells. Cancer Res 61(2):497–503PubMedGoogle Scholar
  23. 23.
    Chung SH, Onoda N, Ishikawa T, Ogisawa K, Takenaka C, Yano Y et al (2002) Peroxisome proliferator-activated receptor gamma activation induces cell cycle arrest via the p53-independent pathway in human anaplastic thyroid cancer cells. Jpn J Cancer Res 93(12):1358–1365PubMedGoogle Scholar
  24. 24.
    Yee LD, Sabourin CL, Liu L, Li HM, Smith PJ, Seewaldt V et al (1999) Peroxisome proliferator-activated receptor gamma activation in human breast cancer. Int J Oncol 15(5):967–973PubMedGoogle Scholar
  25. 25.
    Mehta RG, Williamson E, Patel MK, Koeffler HP (2000) A ligand of peroxisome proliferator-activated receptor gamma, retinoids, and prevention of preneoplastic mammary lesions. J Natl Cancer Inst 92(5):418–423PubMedCrossRefGoogle Scholar
  26. 26.
    Mueller E, Sarraf P, Tontonoz P, Evans RM, Martin KJ, Zhang M et al (1998) Terminal differentiation of human breast cancer through PPAR gamma. Mol Cell 1(3):465–470PubMedCrossRefGoogle Scholar
  27. 27.
    Girnun GD, Smith WM, Drori S, Sarraf P, Mueller E, Eng C et al (2002) APC-dependent suppression of colon carcinogenesis by PPARgamma. Proc Natl Acad Sci USA 99(21):13771–13776PubMedCrossRefGoogle Scholar
  28. 28.
    Nicol CJ, Yoon M, Ward JM, Yamashida M, Fukamachi K, Peters JM et al (2004) PPAR{gamma} influences susceptibility to DMBA-induced mammary, ovarian and skin carcinogenesis. Carcinogenesis 25:1747–1755PubMedCrossRefGoogle Scholar
  29. 29.
    Saez E, Rosenfeld J, Livolsi A, Olson P, Lombardo E, Nelson M et al (2004) PPAR gamma signaling exacerbates mammary gland tumor development. Genes Dev 18(5):528–540PubMedCrossRefGoogle Scholar
  30. 30.
    Sporn MB, Suh N, Mangelsdorf DJ (2001) Prospects for prevention and treatment of cancer with selective PPARgamma modulators (SPARMs). Trends Mol Med 7(9):395–400PubMedCrossRefGoogle Scholar
  31. 31.
    Schug J, Overton GC (1997) TESS: transcription element search software on the WWW. In: Technical Report CBIL-TR-1997-1001-v00. Computational Biology and Informatics Laboratory, School of Medicine, University of Pennsylvania, PennsylvaniaGoogle Scholar
  32. 32.
    Petsko G (2003) Modeling structure from sequence. In: Baxevanis AD (ed) Current protocols in bioinfomatics. Wiley, IndianapolisGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  • Xin Wang
    • 1
  • R. Chase Southard
    • 1
  • Clinton D. Allred
    • 3
  • Dominique R. Talbert
    • 1
  • Melinda E. Wilson
    • 2
  • Michael W. Kilgore
    • 1
  1. 1.Department of Molecular and Biomedical PharmacologyUniversity of Kentucky College of MedicineLexingtonUSA
  2. 2.Department of PhysiologyUniversity of Kentucky College of MedicineLexingtonUSA
  3. 3.Department of Nutrition and Food ScienceTexas A&M UniversityCollege StationUSA

Personalised recommendations