Advertisement

Breast Cancer Research and Treatment

, Volume 110, Issue 1, pp 85–98 | Cite as

Concentration-dependent effects of genistein on global gene expression in MCF-7 breast cancer cells: an oligo microarray study

  • Jackie A. Lavigne
  • Yoko Takahashi
  • Gadisetti V. R. Chandramouli
  • Huaitian Liu
  • Susan N. Perkins
  • Stephen D. Hursting
  • Thomas T. Y. WangEmail author
Preclinical Study

Abstract

Breast cancer is the most commonly diagnosed cancer among US women; there is therefore great interest in developing preventive and treatment strategies for this disease. Because breast cancer incidence is much lower in countries where women consume high levels of soy, bioactive compounds in this food source have been studied for their effects on breast cancer. Genistein, found at high levels in soybeans and soy foods, is a controversial candidate breast cancer preventive phytochemical whose effects on breast cells are complex. To understand more clearly the molecular mechanisms underlying the effects of genistein on breast cancer cells, we used a DNA oligo microarray approach to examine the global gene expression patterns in MCF-7 breast cancer cells at both physiologic (1 or 5 μM) and pharmacologic (25 μM) genistein concentrations. Microarray analyses were performed on MCF-7 cells after 48 h of either vehicle or 1, 5, or 25 μM genistein treatment. We found that genistein altered the expression of genes belonging to a wide range of pathways, including estrogen- and p53-mediated pathways. At 1 and 5 μM, genistein elicited an expression pattern suggestive of increased mitogenic activity, confirming the proliferative response to genistein observed in cultured MCF-7 cells, while at 25 μM genistein effected a pattern that likely contributes to increased apoptosis, decreased proliferation and decreased total cell number, also consistent with cell culture results. These findings provide evidence for a molecular signature of genistein’s effects in MCF-7 cells and lay the foundation for elucidating the mechanisms of genistein’s biological impact in breast cancer cells.

Keywords

Genistein Isoflavone Microarray Phytochemical Breast cancer 

Notes

Acknowledgments

Partial funding for this project was provided by a grant to SDH from the Breast Cancer Research Foundation. JAL would like to acknowledge support from the National Cancer Institutes Cancer Prevention Fellowship Program while carrying out this project.

References

  1. 1.
    Ganz PA (2005) Breast cancer, menopause, and long-term survivorship: critical issues for the 21st century. Am J Med 118(12 Suppl 2):136–141PubMedCrossRefGoogle Scholar
  2. 2.
    Dumitrescu RG, Cotarla I (2005) Understanding breast cancer risk—where do we stand in 2005? J Cell Mol Med 9(1):208–221PubMedCrossRefGoogle Scholar
  3. 3.
    Calderon-Margalit R, Paltiel O (2004) Prevention of breast cancer in women who carry BRCA1 or BRCA2 mutations: a critical review of the literature. Int J Cancer 112(3):357–364PubMedCrossRefGoogle Scholar
  4. 4.
    Feki A, Irminger-Finger I (2004) Mutational spectrum of p53 mutations in primary breast and ovarian tumors. Crit Rev Oncol Hematol 52(2):103–116PubMedCrossRefGoogle Scholar
  5. 5.
    Giancotti V (2006) Breast cancer markers. Cancer Lett 243(2):145–159PubMedCrossRefGoogle Scholar
  6. 6.
    Oliveira AM, Ross JS, Fletcher JA (2005) Tumor suppressor genes in breast cancer: the gatekeepers and the caretakers. Am J Clin Pathol 124 Suppl:S16–S28Google Scholar
  7. 7.
    Williams MT, Hord NG (2005) The role of dietary factors in cancer prevention: beyond fruits and vegetables. Nutr Clin Pract 20(4):451–459PubMedCrossRefGoogle Scholar
  8. 8.
    Greenwald P, Clifford CK, Milner JA (2001) Diet and cancer prevention. Eur J Cancer 37(8):948–965PubMedCrossRefGoogle Scholar
  9. 9.
    Messina MJ (2003) Emerging evidence on the role of soy in reducing prostate cancer risk. Nutr Rev 61(4):117–131PubMedCrossRefGoogle Scholar
  10. 10.
    Allred CD, Twaddle NC, Allred KF, Goeppinger TS, Churchwell MI, Ju YH, Helferich WG, Doerge DR (2005) Soy processing affects metabolism and disposition of dietary isoflavones in ovariectomized BALB/c mice. J Agric Food Chem 53(22):8542–8550PubMedCrossRefGoogle Scholar
  11. 11.
    Sarkar FH, Li Y (2002) Mechanisms of cancer chemoprevention by soy isoflavone genistein. Cancer Metastasis Rev 21(3–4):265–280PubMedCrossRefGoogle Scholar
  12. 12.
    Fritz WA, Coward L, Wang J, Lamartiniere CA (1998) Dietary genistein: perinatal mammary cancer prevention, bioavailability and toxicity testing in the rat. Carcinogenesis 19(12):2151–2158PubMedCrossRefGoogle Scholar
  13. 13.
    Lamartiniere CA, Cotroneo MS, Fritz WA, Wang J, Mentor-Marcel R, Elgavish A (2002) Genistein chemoprevention: timing and mechanisms of action in murine mammary and prostate. J Nutr 132(3):552S–558SPubMedGoogle Scholar
  14. 14.
    Shu XO, Jin F, Dai Q, Wen W, Potter JD, Kushi LH, Ruan Z, Gao YT, Zheng W (2001) Soyfood intake during adolescence and subsequent risk of breast cancer among Chinese women. Cancer Epidemiol Biomarkers Prev 10(5):483–488PubMedGoogle Scholar
  15. 15.
    Wu AH, Wan P, Hankin J, Tseng CC, Yu MC, Pike MC (2002) Adolescent and adult soy intake and risk of breast cancer in Asian-Americans. Carcinogenesis 23(9):1491–1496PubMedCrossRefGoogle Scholar
  16. 16.
    Buterin T, Koch C, Naegeli H (2006) Convergent transcriptional profiles induced by endogenous estrogen and distinct xenoestrogens in breast cancer cells. Carcinogenesis 27(8):1567–1578PubMedCrossRefGoogle Scholar
  17. 17.
    Cappelletti V, Miodini P, Di Fronzo G, Daidone MG (2006) Modulation of estrogen receptor-beta isoforms by phytoestrogens in breast cancer cells. Int J Oncol 28(5):1185–1191PubMedGoogle Scholar
  18. 18.
    Leung LK, Wang TT (2000) Bcl-2 is not reduced in the death of MCF-7 cells at low genistein concentration. J Nutr 130(12):2922–2926PubMedGoogle Scholar
  19. 19.
    Li Y, Ahmed F, Ali S, Philip PA, Kucuk O, Sarkar FH (2005) Inactivation of nuclear factor kappaB by soy isoflavone genistein contributes to increased apoptosis induced by chemotherapeutic agents in human cancer cells. Cancer Res 65(15):6934–6942PubMedCrossRefGoogle Scholar
  20. 20.
    Seo HS, Denardo DG, Jacquot Y, Laios I, Vidal DS, Zambrana CR, Leclercq G, Brown PH (2006) Stimulatory effect of genistein and apigenin on the growth of breast cancer cells correlates with their ability to activate ER alpha. Breast Cancer Res Treat 99(2):121–134PubMedCrossRefGoogle Scholar
  21. 21.
    Wang TT, Sathyamoorthy N, Phang JM (1996) Molecular effects of genistein on estrogen receptor mediated pathways. Carcinogenesis 17(2):271–275PubMedCrossRefGoogle Scholar
  22. 22.
    Ju YH, Allred KF, Allred CD, Helferich WG (2006) Genistein stimulates growth of human breast cancer cells in a novel, postmenopausal animal model, with low plasma estradiol concentrations. Carcinogenesis 27(6):1292–1299PubMedCrossRefGoogle Scholar
  23. 23.
    Chen WF, Huang MH, Tzang CH, Yang M, Wong MS (2003) Inhibitory actions of genistein in human breast cancer (MCF-7) cells. Biochim Biophys Acta 1638(2):187–196PubMedGoogle Scholar
  24. 24.
    Li Y, Sarkar FH (2002) Gene expression profiles of genistein-treated PC3 prostate cancer cells. J Nutr 132(12):3623–3631PubMedGoogle Scholar
  25. 25.
    Takahashi Y, Lavigne JA, Hursting SD, Chandramouli GV, Perkins SN, Barrett JC, Wang TT (2004) Using DNA microarray analyses to elucidate the effects of genistein in androgen-responsive prostate cancer cells: identification of novel targets. Mol Carcinog 41(2):108–119PubMedCrossRefGoogle Scholar
  26. 26.
    Terasaka S, Aita Y, Inoue A, Hayashi S, Nishigaki M, Aoyagi K, Sasaki H, Wada-Kiyama Y, Sakuma Y, Akaba S, Tanaka J, Sone H, Yonemoto J, Tanji M, Kiyama R (2004) Using a customized DNA microarray for expression profiling of the estrogen-responsive genes to evaluate estrogen activity among natural estrogens and industrial chemicals. Environ Health Perspect 112(7):773–781PubMedGoogle Scholar
  27. 27.
    Frasor J, Stossi F, Danes JM, Komm B, Lyttle CR, Katzenellenbogen BS (2004) Selective estrogen receptor modulators: discrimination of agonistic versus antagonistic activities by gene expression profiling in breast cancer cells. Cancer Res 64(4):1522–1533PubMedCrossRefGoogle Scholar
  28. 28.
    Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31(4):e15PubMedCrossRefGoogle Scholar
  29. 29.
    Mardia KV, Kent JT, Bibby JM (1979) Multivariate analysis. Academic, LondonGoogle Scholar
  30. 30.
    Hosack DA, Dennis G Jr, Sherman BT, Lane HC, Lempicki RA (2003) Identifying biological themes within lists of genes with EASE. Genome Biol 4(10):R70PubMedCrossRefGoogle Scholar
  31. 31.
    Millenaar FF, Okyere J, May ST, van Zanten M, Voesenek LA, Peeters AJ (2006) How to decide? Different methods of calculating gene expression from short oligonucleotide array data will give different results. BMC Bioinfor 7:137CrossRefGoogle Scholar
  32. 32.
    Ganoth D, Bornstein G, Ko TK, Larsen B, Tyers M, Pagano M, Hershko A (2001) The cell-cycle regulatory protein Cks1 is required for SCF(Skp2)-mediated ubiquitinylation of p27. Nat Cell Biol 3(3):321–324PubMedCrossRefGoogle Scholar
  33. 33.
    Spruck CH, de Miguel MP, Smith AP, Ryan A, Stein P, Schultz RM, Lincoln AJ, Donovan PJ, Reed SI (2003) Requirement of Cks2 for the first metaphase/anaphase transition of mammalian meiosis. Science 300(5619):647–650PubMedCrossRefGoogle Scholar
  34. 34.
    Urbanowicz-Kachnowicz I, Baghdassarian N, Nakache C, Gracia D, Mekki Y, Bryon PA, Ffrench M (1999) ckshs expression is linked to cell proliferation in normal and malignant human lymphoid cells. Int J Cancer 82(1):98–104PubMedCrossRefGoogle Scholar
  35. 35.
    Ballabeni A, Melixetian M, Zamponi R, Masiero L, Marinoni F, Helin K (2004) Human geminin promotes pre-RC formation and DNA replication by stabilizing CDT1 in mitosis. Embo J 23(15):3122–3132PubMedCrossRefGoogle Scholar
  36. 36.
    Gao H, Parkin S, Johnson PF, Schwartz RC (2002) C/EBP gamma has a stimulatory role on the IL-6 and IL-8 promoters. J Biol Chem 277(41):38827–38837PubMedCrossRefGoogle Scholar
  37. 37.
    Vazquez-Novelle MD, Esteban V, Bueno A, Sacristan MP (2005) Functional homology among human and fission yeast Cdc14 phosphatases. J Biol Chem 280(32):29144–29150PubMedCrossRefGoogle Scholar
  38. 38.
    Blagosklonny MV (2006) Prolonged mitosis versus tetraploid checkpoint: how p53 measures the duration of mitosis. Cell Cycle 5(9):971–975PubMedGoogle Scholar
  39. 39.
    Reimer CL, Borras AM, Kurdistani SK, Garreau JR, Chung M, Aaronson SA, Lee SW (1999) Altered regulation of cyclin G in human breast cancer and its specific localization at replication foci in response to DNA damage in p53 + / + cells. J Biol Chem 274(16):11022–11029PubMedCrossRefGoogle Scholar
  40. 40.
    Smith ML, Chen IT, Zhan Q, Bae I, Chen CY, Gilmer TM, Kastan MB, O’Connor PM, Fornace AJ Jr (1994) Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science 266(5189):1376–1380PubMedCrossRefGoogle Scholar
  41. 41.
    Rocha S, Martin AM, Meek DW, Perkins ND (2003) p53 represses cyclin D1 transcription through down regulation of Bcl-3 and inducing increased association of the p52 NF-kappaB subunit with histone deacetylase 1. Mol Cell Biol 23(13):4713–4727PubMedCrossRefGoogle Scholar
  42. 42.
    Fang G, Yu H, Kirschner MW (1998) The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev 12(12):1871–1883PubMedCrossRefGoogle Scholar
  43. 43.
    Lee MG, Nurse P (1987) Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature 327(6117):31–35PubMedCrossRefGoogle Scholar
  44. 44.
    Papadopoulos K (2006) Targeting the Bcl-2 family in cancer therapy. Semin Oncol 33(4):449–456PubMedCrossRefGoogle Scholar
  45. 45.
    Lavrik I, Golks A, Krammer PH (2005) Death receptor signaling. J Cell Sci 118(Pt 2):265–267PubMedCrossRefGoogle Scholar
  46. 46.
    Shen HM, Pervaiz S (2006) TNF receptor superfamily-induced cell death: redox-dependent execution. Faseb J 20(10):1589–1598PubMedCrossRefGoogle Scholar
  47. 47.
    Mathai JP, Germain M, Marcellus RC, Shore GC (2002) Induction and endoplasmic reticulum location of BIK/NBK in response to apoptotic signaling by E1A and p53. Oncogene 21(16):2534–2544PubMedCrossRefGoogle Scholar
  48. 48.
    Hur J, Chesnes J, Coser KR, Lee RS, Geck P, Isselbacher KJ, Shioda T (2004) The Bik BH3-only protein is induced in estrogen-starved and antiestrogen-exposed breast cancer cells and provokes apoptosis. Proc Natl Acad Sci USA 101(8):2351–2356PubMedCrossRefGoogle Scholar
  49. 49.
    Bae J, Hsu SY, Leo CP, Zell K, Hsueh AJ (2001) Underphosphorylated BAD interacts with diverse antiapoptotic Bcl-2 family proteins to regulate apoptosis. Apoptosis 6(5):319–330PubMedCrossRefGoogle Scholar
  50. 50.
    Yan J, Yun H, Yang Y, Jing B, Feng C, Song-bin F (2006) Upregulation of BNIP3 promotes apoptosis of lung cancer cells that were induced by p53. Biochem Biophys Res Commun 346(2):501–507PubMedCrossRefGoogle Scholar
  51. 51.
    Takayama S, Sato T, Krajewski S, Kochel K, Irie S, Millan JA, Reed JC (1995) Cloning and functional analysis of BAG-1: a novel Bcl-2-binding protein with anti-cell death activity. Cell 80(2):279–284PubMedCrossRefGoogle Scholar
  52. 52.
    Schall TJ, Lewis M, Koller KJ, Lee A, Rice GC, Wong GH, Gatanaga T, Granger GA, Lentz R, Raab H et al (1990) Molecular cloning and expression of a receptor for human tumor necrosis factor. Cell 61(2):361–370PubMedCrossRefGoogle Scholar
  53. 53.
    Sheikh MS, Fornace AJ Jr (2000) Death and decoy receptors and p53-mediated apoptosis. Leukemia 14(8):1509–1513PubMedCrossRefGoogle Scholar
  54. 54.
    Suda T, Takahashi T, Golstein P, Nagata S (1993) Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 75(6):1169–1178PubMedCrossRefGoogle Scholar
  55. 55.
    Walczak H, Degli-Esposti MA, Johnson RS, Smolak PJ, Waugh JY, Boiani N, Timour MS, Gerhart MJ, Schooley KA, Smith CA, Goodwin RG, Rauch CT (1997) TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. Embo J 16(17):5386–5397PubMedCrossRefGoogle Scholar
  56. 56.
    Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A (1996) Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 271(22):12687–12690PubMedCrossRefGoogle Scholar
  57. 57.
    Nakano H, Shindo M, Yamada K, Yoshida MC, Santee SM, Ware CF, Jenkins NA, Gilbert DJ, Yagita H, Copeland NC, Okumura K (1997) Human TNF receptor-associated factor 5 (TRAF5): cDNA cloning, expression and assignment of the TRAF5 gene to chromosome 1q32. Genomics 42(1):26–32PubMedCrossRefGoogle Scholar
  58. 58.
    Sax JK, El-Deiry WS (2003) Identification and characterization of the cytoplasmic protein TRAF4 as a p53-regulated proapoptotic gene. J Biol Chem 278(38):36435–36444PubMedCrossRefGoogle Scholar
  59. 59.
    Anzick SL, Kononen J, Walker RL, Azorsa DO, Tanner MM, Guan XY, Sauter G, Kallioniemi OP, Trent JM, Meltzer PS (1997) AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277(5328):965–968PubMedCrossRefGoogle Scholar
  60. 60.
    Voegel JJ, Heine MJ, Zechel C, Chambon P, Gronemeyer H (1996) TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. Embo J 15(14):3667–3675PubMedGoogle Scholar
  61. 61.
    Lewis MJ, Wiebe JP, Heathcote JG (2004) Expression of progesterone metabolizing enzyme genes (AKR1C1, AKR1C2, AKR1C3, SRD5A1, SRD5A2) is altered in human breast carcinoma. BMC Cancer 4:27PubMedCrossRefGoogle Scholar
  62. 62.
    Penning TM, Steckelbroeck S, Bauman DR, Miller MW, Jin Y, Peehl DM, Fung KM, Lin HK (2006) Aldo-keto reductase (AKR) 1C3: role in prostate disease and the development of specific inhibitors. Mol Cell Endocrinol 248(1–2):182–191PubMedCrossRefGoogle Scholar
  63. 63.
    Sissung TM, Price DK, Sparreboom A, Figg WD (2006) Pharmacogenetics and regulation of human cytochrome P450 1B1: implications in hormone-mediated tumor metabolism and a novel target for therapeutic intervention. Mol Cancer Res 4(3):135–150PubMedCrossRefGoogle Scholar
  64. 64.
    Moebius FF, Fitzky BU, Lee JN, Paik YK, Glossmann H (1998) Molecular cloning and expression of the human delta7-sterol reductase. Proc Natl Acad Sci USA 95(4):1899–1902PubMedCrossRefGoogle Scholar
  65. 65.
    Ntambi JM (1995) The regulation of stearoyl-CoA desaturase (SCD). Prog Lipid Res 34(2):139–150PubMedCrossRefGoogle Scholar
  66. 66.
    Peri A, Danza G, Serio M (2005) Seladin-1 as a target of estrogen receptor activation in the brain: a new gene for a rather old story? J Endocrinol Invest 28(3):285–293PubMedGoogle Scholar
  67. 67.
    Hess J, Angel P, Schorpp-Kistner M (2004) AP-1 subunits: quarrel and harmony among siblings. J Cell Sci 117(Pt 25):5965–5973PubMedCrossRefGoogle Scholar
  68. 68.
    Ezzat S, Asa SL (2005) FGF receptor signaling at the crossroads of endocrine homeostasis and tumorigenesis. Horm Metab Res 37(6):355–360PubMedCrossRefGoogle Scholar
  69. 69.
    Berry M, Nunez AM, Chambon P (1989) Estrogen-responsive element of the human pS2 gene is an imperfectly palindromic sequence. Proc Natl Acad Sci USA 86(4):1218–1222PubMedCrossRefGoogle Scholar
  70. 70.
    Rae JM, Johnson MD, Scheys JO, Cordero KE, Larios JM, Lippman ME (2005) GREB 1 is a critical regulator of hormone dependent breast cancer growth. Breast Cancer Res Treat 92(2):141–149PubMedCrossRefGoogle Scholar
  71. 71.
    Inoue A, Omoto Y, Yamaguchi Y, Kiyama R, Hayashi SI (2004) Transcription factor EGR3 is involved in the estrogen-signaling pathway in breast cancer cells. J Mol Endocrinol 32(3):649–661PubMedCrossRefGoogle Scholar
  72. 72.
    Lee BC, Lee TH, Zagozdzon R, Avraham S, Usheva A, Avraham HK (2005) Carboxyl-terminal Src kinase homologous kinase negatively regulates the chemokine receptor CXCR4 through YY1 and impairs CXCR4/CXCL12 (SDF-1alpha)-mediated breast cancer cell migration. Cancer Res 65(7):2840–2845PubMedCrossRefGoogle Scholar
  73. 73.
    Salomon DS, Normanno N, Ciardiello F, Brandt R, Shoyab M, Todaro GJ (1995) The role of amphiregulin in breast cancer. Breast Cancer Res Treat 33(2):103–114PubMedCrossRefGoogle Scholar
  74. 74.
    Singer CF, Kronsteiner N, Hudelist G, Marton E, Walter I, Kubista M, Czerwenka K, Schreiber M, Seifert M, Kubista E (2003) Interleukin 1 system and sex steroid receptor expression in human breast cancer: interleukin 1alpha protein secretion is correlated with malignant phenotype. Clin Cancer Res 9(13):4877–4883PubMedGoogle Scholar
  75. 75.
    Miller LJ, Kurtzman SH, Anderson K, Wang Y, Stankus M, Renna M, Lindquist R, Barrows G, Kreutzer DL (2000) Interleukin-1 family expression in human breast cancer: interleukin-1 receptor antagonist. Cancer Invest 18(4):293–302PubMedCrossRefGoogle Scholar
  76. 76.
    Pantschenko AG, Pushkar I, Anderson KH, Wang Y, Miller LJ, Kurtzman SH, Barrows G, Kreutzer DL (2003) The interleukin-1 family of cytokines and receptors in human breast cancer: implications for tumor progression. Int J Oncol 23(2):269–284PubMedGoogle Scholar
  77. 77.
    Dillon BJ, Prieto VG, Curley SA, Ensor CM, Holtsberg FW, Bomalaski JS, Clark MA (2004) Incidence and distribution of argininosuccinate synthetase deficiency in human cancers: a method for identifying cancers sensitive to arginine deprivation. Cancer 100(4):826–833PubMedCrossRefGoogle Scholar
  78. 78.
    Boutros R, Byrne JA (2005) D53 (TPD52L1) is a cell cycle-regulated protein maximally expressed at the G2-M transition in breast cancer cells. Exp Cell Res 310(1):152–165PubMedCrossRefGoogle Scholar
  79. 79.
    Dawling S, Roodi N, Mernaugh RL, Wang X, Parl FF (2001) Catechol-O-methyltransferase (COMT)-mediated metabolism of catechol estrogens: comparison of wild-type and variant COMT isoforms. Cancer Res 61(18):6716–6722PubMedGoogle Scholar
  80. 80.
    Mason PJ, Stevens D, Diez A, Knight SW, Scopes DA, Vulliamy TJ (1999) Human hexose-6-phosphate dehydrogenase (glucose 1-dehydrogenase) encoded at 1p36: coding sequence and expression. Blood Cells Mol Dis 25(1):30–37PubMedCrossRefGoogle Scholar
  81. 81.
    Loeber G, Dworkin MB, Infante A, Ahorn H (1994) Characterization of cytosolic malic enzyme in human tumor cells. FEBS Lett 344(2–3):181–186PubMedCrossRefGoogle Scholar
  82. 82.
    Rundlof AK, Carlsten M, Arner ES (2001) The core promoter of human thioredoxin reductase 1: cloning, transcriptional activity, and Oct-1, Sp1, and Sp3 binding reveal a housekeeping-type promoter for the AU-rich element-regulated gene. J Biol Chem 276(32):30542–30551PubMedCrossRefGoogle Scholar
  83. 83.
    Smith A, Price C, Cullen M, Muda M, King A, Ozanne B, Arkinstall S, Ashworth A (1997) Chromosomal localization of three human dual specificity phosphatase genes (DUSP4, DUSP6, and DUSP7). Genomics 42(3):524–527PubMedCrossRefGoogle Scholar
  84. 84.
    Burtscher I, Christofori G (1999) The IGF/IGF-1 receptor signaling pathway as a potential target for cancer therapy. Drug Resist Updat 2(1):3–8PubMedCrossRefGoogle Scholar
  85. 85.
    Shen JC, Klein RD, Wei Q, Guan Y, Contois JH, Wang TT, Chang S, Hursting SD (2000) Low-dose genistein induces cyclin-dependent kinase inhibitors and G(1) cell-cycle arrest in human prostate cancer cells. Mol Carcinog 29(2):92–102PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Jackie A. Lavigne
    • 1
  • Yoko Takahashi
    • 2
  • Gadisetti V. R. Chandramouli
    • 3
  • Huaitian Liu
    • 4
  • Susan N. Perkins
    • 5
  • Stephen D. Hursting
    • 6
  • Thomas T. Y. Wang
    • 7
    Email author
  1. 1.Division of Cancer PreventionNational Cancer Institute, NIHBethesdaUSA
  2. 2.Beltsville Human Nutrition Research Center, ARS, USDANational Food Research Institute, Tsukuba, Ibaraki, Japan and Phytonutrients LaboratoryBeltsvilleUSA
  3. 3.Office of the DirectorNational Cancer Institute, NIHBethesdaUSA
  4. 4.Center for Bioinformatics/SAIC, NCI, NIHBethesdaUSA
  5. 5.Division of Nutritional SciencesUniversity of Texas at AustinAustinUSA
  6. 6.Division of Nutritional SciencesUniversity of Texas at AustinAustinUSA
  7. 7.Phytonutrients Laboratory, Beltsville Human Nutrition Research CenterAgricultural Research Service, USDABeltsvilleUSA

Personalised recommendations