Breast Cancer Research and Treatment

, Volume 109, Issue 1, pp 143–155 | Cite as

Glutathione S-transferase M1 and P1 polymorphisms and risk of breast cancer and fibrocystic breast conditions in Chinese women

  • Lori C. Sakoda
  • Christie R. Blackston
  • Kan Xue
  • Jennifer A. Doherty
  • Roberta M. Ray
  • Ming Gang Lin
  • Helge Stalsberg
  • Dao Li Gao
  • Ziding Feng
  • David B. Thomas
  • Chu Chen
Epidemiology

Abstract

Enzymes encoded by the glutathione S-tranferase mu 1 (GSTM1) and pi 1 (GSTP1) genes, which are expressed in breast tissue, catalyze the detoxification of endogenous and exogenous electrophiles. Reduced enzyme activity, due to carriage of the GSTM1 deletion or the GSTP1 Ile105Val Val allele, may therefore affect susceptibility to breast cancer and related conditions. In a case-control study of Chinese women, we examined whether these polymorphisms were associated with risk of breast cancer and fibrocystic breast conditions. Women diagnosed with breast cancer (n = 615) or fibrocystic breast conditions (n = 467) were compared to women without clinical breast disease (n = 878). We also examined whether these associations differed by menopausal status or by presence of proliferation in the extra-tumoral epithelium among women with breast cancer and in lesions among women with fibrocystic conditions. No overall association of either GST polymorphism with risk of breast cancer or fibrocystic breast conditions was observed. There was some evidence of slightly elevated cancer risk associated with carriage of the GSTM1 null genotype and at least one GSTP1 105–Val allele (OR = 1.33, 95% CI, 0.99–1.80), compared to carriage of the GSTM1 non-null and GSTP1 Ile/Ile genotypes. This relationship was stronger in women who had breast cancer with extra-tumoral tissue proliferation (OR = 1.77, 95% CI, 1.03–3.04). Our results suggest that GSTM1 and GSTP1 genotypes do not individually influence susceptibility to breast cancer or fibrocystic breast conditions. The observed increased risk of breast cancer associated with joint carriage of the GSTM1 null genotype and GSTP1 105–Val allele needs confirmation in other studies.

Keywords

Breast cancer Chinese Fibrocystic breast conditions Glutathione S-transferase Polymorphism 

Abbreviations

GST

Glutathione S-transferase

BSE

Breast self examination

PCR

Polymerase chain reaction

OR

Odds ratio

CI

Confidence interval

ITC

Isothiocynates

References

  1. 1.
    Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88PubMedCrossRefGoogle Scholar
  2. 2.
    Howie AF, Forrester LM, Glancey MJ et al (1990) Glutathione S-transferase and glutathione peroxidase expression in normal and tumour human tissues. Carcinogenesis 11(3):451–458PubMedCrossRefGoogle Scholar
  3. 3.
    Forrester LM, Hayes JD, Millis R et al (1990) Expression of glutathione S-transferases and cytochrome P450 in normal and tumor breast tissue. Carcinogenesis 11(12):2163–2170PubMedCrossRefGoogle Scholar
  4. 4.
    Haas S, Pierl C, Harth V et al (2006) Expression of xenobiotic and steroid hormone metabolizing enzymes in human breast carcinomas. Int J Cancer 119(8):1785–1791PubMedCrossRefGoogle Scholar
  5. 5.
    Board PG (1981) Gene deletion and partial deficiency of the glutathione S- transferase (ligandin) system in man. FEBS Lett 135(1):12–14PubMedCrossRefGoogle Scholar
  6. 6.
    Zimniak P, Nanduri B, Pikula S et al (1994) Naturally occurring human glutathione S-transferase GSTP1–1 isoforms with isoleucine and valine in position 104 differ in enzymic properties. Eur J Biochem 224:893–899PubMedCrossRefGoogle Scholar
  7. 7.
    Ali-Osman F, Akande O, Antoun G et al (1997) Molecular cloning, characterization, and expression in Escherichia coli of full-length cDNAs of three human glutathione S-transferase Pi gene variants. Evidence for differential catalytic activity of the encoded proteins. J Biol Chem 272(15):10004–10012PubMedCrossRefGoogle Scholar
  8. 8.
    Zhong S, Wyllie AH, Barnes D et al (1993) Relationship between the GSTM1 genetic polymorphism and susceptibility to bladder, breast and colon cancer. Carcinogenesis 14(9):1821–1824PubMedCrossRefGoogle Scholar
  9. 9.
    Ambrosone CB, Freudenheim JL, Graham S et al (1995) Cytochrome P4501A1 and glutathione s-transferase (M1) genetic polymorphisms and postmenopausal breast cancer risk. Cancer Res 55(16):3483–3485PubMedGoogle Scholar
  10. 10.
    Kelsey KT, Hankinson SE, Colditz GA et al (1997) Glutathione S-Transferase class μ deletion polymorphism and breast cancer: results from prevalent versus incident cases. Cancer Epidemiol Biomarkers Prev 6:511–515PubMedGoogle Scholar
  11. 11.
    Bailey LR, Roodi N, Verrier CS et al (1998) Breast cancer and CYP1A1, GSTM1, and GSTT1 polymorphisms: evidence of a lack of association in Caucasians and African Americans. Cancer Res 58:65–70PubMedGoogle Scholar
  12. 12.
    Charrier J, Maugard CM, Le M et al (1999) Allelotype influence at glutathione S-transferase M1 locus on breast cancer susceptibility. Br J Cancer 79(2):346–353PubMedCrossRefGoogle Scholar
  13. 13.
    Ambrosone CB, Coles BF, Freudenheim JL et al (1999) Glutathione-S-transferase (GSTM1) genetic polymorphisms do not affect human breast cancer risk, regardless of dietary antioxidants. J Nutr 129(2 Suppl S):565S–568SPubMedGoogle Scholar
  14. 14.
    Garcia-Closas M, Kelsey KT, Hankinson SE et al (1999) Glutathione S-transferase mu and theta polymorphisms and breast cancer susceptibility. J Natl Cancer Inst 91(22):1960–1964PubMedCrossRefGoogle Scholar
  15. 15.
    Lizard-Nacol S, Coudert B, Colosetti P et al (1999) Glutathione S-transferase M1 null genotype: lack of association with tumour characteristics and survival in advanced breast cancer. Breast Cancer Res 1(1):81–87PubMedCrossRefGoogle Scholar
  16. 16.
    Curran JE, Weinstein SR, Griffiths LR (2000) Polymorphisms of glutathione S-transferase genes (GSTM1, GSTP1 and GSTT1) and breast cancer susceptibility. Cancer Lett 153(1–2):113–120PubMedCrossRefGoogle Scholar
  17. 17.
    Millikan R, Pittman G, Tse CK et al (2000) Glutathione S-transferases M1, T1, and P1 and breast cancer. Cancer Epidemiol Biomarkers Prev 9(6):567–573PubMedGoogle Scholar
  18. 18.
    Park SK, Yoo KY, Lee SJ et al (2000) Alcohol consumption, glutathione S-transferase M1 and T1 genetic polymorphisms and breast cancer risk. Pharmacogenetics 10(4):301–309PubMedCrossRefGoogle Scholar
  19. 19.
    Krajinovic M, Ghadirian P, Richer C et al (2001) Genetic susceptibility to breast cancer in French-Canadians: role of carcinogen-metabolizing enzymes and gene-environment interactions. Int J Cancer 92(2):220–225PubMedCrossRefGoogle Scholar
  20. 20.
    Mitrunen K, Jourenkova N, Kataja V et al (2001) Glutathione S-transferase M1, M3, P1, and T1 genetic polymorphisms and susceptibility to breast cancer. Cancer Epidemiol Biomarkers Prev 10(3):229–236PubMedGoogle Scholar
  21. 21.
    Dialyna IA, Arvanitis DA, Spandidos DA (2001) Genetic polymorphisms and transcriptional pattern analysis of CYP1A1, AhR, GSTM1, GSTP1 and GSTT1 genes in breast cancer. Int J Mol Med 8(1):79–87PubMedGoogle Scholar
  22. 22.
    Gudmundsdottir K, Tryggvadottir L, Eyfjord JE (2001) GSTM1, GSTT1, and GSTP1 genotypes in relation to breast cancer risk and frequency of mutations in the p53 gene. Cancer Epidemiol Biomarkers Prev 10(11):1169–1173PubMedGoogle Scholar
  23. 23.
    da Fonte de Amorim L, Rossini A, Mendonca G et al (2002) CYP1A1, GSTM1, and GSTT1 polymorphisms and breast cancer risk in Brazilian women. Cancer Lett 181(2):179–186PubMedCrossRefGoogle Scholar
  24. 24.
    Siegelmann-Danieli N,Buetow KH (2002) Significance of genetic variation at the glutathione S-transferase M1 and NAD(P)H:Quinone Oxidoreductase 1 detoxification genes in breast cancer development. Oncology 62(1):39–45PubMedCrossRefGoogle Scholar
  25. 25.
    Zheng W, Wen WQ, Gustafson DR et al (2002) GSTM1 and GSTT1 polymorphisms and postmenopausal breast cancer risk. Breast Cancer Res Treat 74(1):9–16PubMedCrossRefGoogle Scholar
  26. 26.
    Zheng T, Holford TR, Zahm SH et al (2002) Cigarette smoking, glutathione-s-transferase M1 and t1 genetic polymorphisms, and breast cancer risk (United States). Cancer Causes Control 13(7):637–645PubMedCrossRefGoogle Scholar
  27. 27.
    Khedhaier A, Remadi S, Corbex M et al (2003) Glutathione S-transferases (GSTT1 and GSTM1) gene deletions in Tunisians: susceptibility and prognostic implications in breast carcinoma. Br J Cancer 89(8):1502–1507PubMedCrossRefGoogle Scholar
  28. 28.
    Park SK, Yim DS, Yoon KS et al (2004) Combined effect of GSTM1 , GSTT1 , and COMT genotypes in individual breast cancer risk. Breast Cancer Res Treat 88(1):55–62PubMedCrossRefGoogle Scholar
  29. 29.
    Vogl FD, Taioli E, Maugard C et al (2004) Glutathione S-transferases M1, T1, and P1 and breast cancer: a pooled analysis. Cancer Epidemiol Biomarkers Prev 13(9):1473–1479PubMedGoogle Scholar
  30. 30.
    Egan KM, Cai Q, Shu XO et al (2004) Genetic polymorphisms in GSTM1, GSTP1, and GSTT1 and the risk for breast cancer: results from the Shanghai Breast Cancer Study and meta-analysis. Cancer Epidemiol Biomarkers Prev 13(2):197–204PubMedCrossRefGoogle Scholar
  31. 31.
    Linhares JJ, Da Silva I, De Souza NC et al (2005) Genetic polymorphism of GSTM1 in women with breast cancer and interact with reproductive history and several clinical pathologies. Biol Res 38(2–3):273–281PubMedGoogle Scholar
  32. 32.
    van der Hel OL, Bueno-de-Mesquita HB, van Gils CH et al (2005) Cumulative genetic defects in carcinogen metabolism may increase breast cancer risk (The Netherlands). Cancer Causes Control 16(6):675–681PubMedCrossRefGoogle Scholar
  33. 33.
    Cheng TC, Chen ST, Huang CS et al (2005) Breast cancer risk associated with genotype polymorphism of the catechol estrogen-metabolizing genes: A multigenic study on cancer susceptibility. Int J Cancer 113(3):345–353PubMedCrossRefGoogle Scholar
  34. 34.
    Wu SH, Tsai SM, Hou MF et al (2006) Interaction of genetic polymorphisms in cytochrome P450 2E1 and glutathione S-transferase M1 to breast cancer in Taiwanese woman without smoking and drinking habits. Breast Cancer Res Treat 100(1):93–98PubMedCrossRefGoogle Scholar
  35. 35.
    Helzlsouer KJ, Selmin O, Huang HY et al (1998) Association between glutathione S-transferase M1, P1, and T1 genetic polymorphisms and development of breast cancer [see comments]. J Natl Cancer Inst 90(7):512–518PubMedCrossRefGoogle Scholar
  36. 36.
    Terry PD, Goodman M (2006) Is the association between cigarette smoking and breast cancer modified by genotype? A review of epidemiologic studies and meta-analysis. Cancer Epidemiol Biomarkers Prev 15(4):602–611PubMedCrossRefGoogle Scholar
  37. 37.
    Zheng T, Holford TR, Zahm SH et al (2003) Glutathione S-transferase M1 and T1 genetic polymorphisms, alcohol consumption and breast cancer risk. Br J Cancer 88(1):58–62PubMedCrossRefGoogle Scholar
  38. 38.
    Park SK, Kang D, Noh DY et al (2003) Reproductive factors, glutathione S-transferase M1 and T1 genetic polymorphism and breast cancer risk. Breast Cancer Res Treat 78(1):89–96PubMedCrossRefGoogle Scholar
  39. 39.
    Harries LW, Stubbins MJ, Forman D et al (1997) Identification of genetic polymorphisms at the glutathione s-transferases Pi locus and association with susceptibility to bladder, testicular and prostate cancer. Carcinogenesis 18(4):641–644PubMedCrossRefGoogle Scholar
  40. 40.
    Zhao M, Lewis R, Gustafson DR et al (2001) No apparent association of GSTP1 A(313)G polymorphism with breast cancer risk among postmenopausal Iowa women. Cancer Epidemiol Biomarkers Prev 10(12):1301–1302PubMedGoogle Scholar
  41. 41.
    Kim SU, Lee KM, Park SK et al (2004) Genetic polymorphism of glutathione S-transferase P1 and breast cancer risk. J Biochem Mol Biol 37(5):582–585PubMedGoogle Scholar
  42. 42.
    Spurdle AB, Chang JH, Byrnes GB et al (2007) A systematic approach to analysing gene-gene interactions: polymorphisms at the microsomal epoxide hydrolase EPHX and glutathione S-transferase GSTM1, GSTT1, and GSTP1 loci and breast cancer risk. Cancer Epidemiol Biomarkers Prev 16(4):769–774PubMedCrossRefGoogle Scholar
  43. 43.
    Lampe JW, Peterson S (2002) Brassica, biotransformation and cancer risk: genetic polymorphisms alter the preventive effects of cruciferous vegetables. J Nutr 132(10):2991–2994PubMedGoogle Scholar
  44. 44.
    Seow A, Vainio H, Yu MC (2005) Effect of glutathione-S-transferase polymorphisms on the cancer preventive potential of isothiocyanates: an epidemiological perspective. Mutat Res 592(1–2):58–67PubMedGoogle Scholar
  45. 45.
    Fowke JH, Chung FL, Jin F et al (2003) Urinary isothiocyanate levels, brassica, and human breast cancer. Cancer Res 63(14):3980–3986PubMedGoogle Scholar
  46. 46.
    Ambrosone CB, McCann SE, Freudenheim JL et al (2004) Breast cancer risk in premenopausal women is inversely associated with consumption of broccoli, a source of isothiocyanates, but is not modified by GST genotype. J Nutr 134(5):1134–1138PubMedGoogle Scholar
  47. 47.
    Dupont WD, Page DL (1985) Risk factors for breast cancer in women with proliferative breast disease. N Engl J Med 312(3):146–151PubMedCrossRefGoogle Scholar
  48. 48.
    Carter CL, Corle DK, Micozzi MS et al (1988) A prospective study of the development of breast cancer in 16,692 women with benign breast disease. Am J Epidemiol 128(3):467–477PubMedGoogle Scholar
  49. 49.
    London SJ, Connolly JL, Schnitt SJ et al (1992) A prospective study of benign breast disease and the risk of breast cancer JAMA 267(7):941–944PubMedCrossRefGoogle Scholar
  50. 50.
    Hartmann LC, Sellers TA, Frost MH et al (2005) Benign breast disease and the risk of breast cancer. N Engl J Med 353(3):229–237PubMedCrossRefGoogle Scholar
  51. 51.
    Thomas DB, Gao DL, Self SG et al (1997) Randomized trial of breast self-examination in Shanghai: methodology and preliminary results. J Natl Cancer Inst 89(5):355–365PubMedCrossRefGoogle Scholar
  52. 52.
    Thomas DB, Gao DL, Ray RM et al (2002) Randomized trial of breast self-examination in Shanghai: final results. J Natl Cancer Inst 94(19):1445–1457PubMedGoogle Scholar
  53. 53.
    Wu C, Ray RM, Lin MG et al (2004) A case-control study of risk factors for fibrocystic breast conditions: Shanghai nutrition and breast disease study, China, 1995–2000. Am J Epidemiol 160(10):945–960PubMedCrossRefGoogle Scholar
  54. 54.
    Li W, Ray RM, Lampe JW et al (2005) Dietary and other risk factors in women having fibrocystic breast conditions with and without concurrent breast cancer: a nested case-control study in Shanghai, China. Int J Cancer 2005;115:981–93CrossRefGoogle Scholar
  55. 55.
    Shannon J, Ray R, Wu C et al (2005) Food and botanical groupings and risk of breast cancer: a case-control study in Shanghai, China. Cancer Epidemiol Biomarkers Prev 14(1):81–90PubMedGoogle Scholar
  56. 56.
    Suter NM, Ray RM, Hu YW et al (2004) BRCA1 and BRCA2 mutations in women from Shanghai China. Cancer Epidemiol Biomarkers Prev 13(2):181–189PubMedCrossRefGoogle Scholar
  57. 57.
    Aaman TB, Stalsberg H, Thomas DB (1997) Extratumoral breast tissue in breast cancer patients: a multinational study of variations with age and country of residence in low- and high-risk countries. WHO Collaborative Study of Neoplasia and Steroid Contraceptives. Int J Cancer 71(3):333–339PubMedCrossRefGoogle Scholar
  58. 58.
    Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215PubMedCrossRefGoogle Scholar
  59. 59.
    Bell GI, Karam JH, Rutter WJ (1981) Polymorphic DNA region adjacent to the 5′ end of the human insulin gene. Proc Natl Acad Sci USA 78(9):5759–5763PubMedCrossRefGoogle Scholar
  60. 60.
    Maniatis T, Fritsch EF, Sambrook J (1982). Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, N.Y., pp. 109–112Google Scholar
  61. 61.
    Chen C, Madeleine MM, Lubinski C et al (1996) Glutathione S-transferase M1 genotypes and the risk of anal cancer: a population-based case-control study. Cancer Epidemiol Biomarkers Prev 5(12):985–991PubMedGoogle Scholar
  62. 62.
    Bell DA, Taylor JA, Paulson DF et al (1993) Genetic risk and carcinogen exposure: a common inherited defect of the carcinogen-metabolism gene glutathione S-transferase M1 (GSTM1) that increases susceptibility to bladder cancer. J Natl Cancer Inst 85(14):1159–1164PubMedCrossRefGoogle Scholar
  63. 63.
    Szklo M, Nieto FJ (2000) Epidemiology: beyond the basics. Aspen Publishers, Inc., Gaithersburg, MDGoogle Scholar
  64. 64.
    Shen J, Lin G, Yuan W et al (1998) Glutathione transferase T1 and M1 genotype polymorphism in the normal population of Shanghai. Arch Toxicol 72(7):456–458PubMedCrossRefGoogle Scholar
  65. 65.
    Zhong SL, Zhou SF, Chen X et al (2006) Relationship between genotype and enzyme activity of glutathione S-transferases M1 and P1 in Chinese. Eur J Pharm Sci 28(1–2):77–85PubMedCrossRefGoogle Scholar
  66. 66.
    Howie AF, Miller WR, Hawkins RA et al (1989) Expression of glutathione S-transferase B1, B2, Mu and Pi in breast cancers and their relationship to oestrogen receptor status. Br J Cancer 60(6):834–837PubMedGoogle Scholar
  67. 67.
    Gilbert L, Elwood LJ, Merino M et al (1993) A pilot study of pi-class glutathione S-transferase expression in breast cancer: correlation with estrogen receptor expression and prognosis in node-negative breast cancer. J Clin Oncol 11(1):49–58PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Lori C. Sakoda
    • 1
    • 2
  • Christie R. Blackston
    • 3
  • Kan Xue
    • 4
  • Jennifer A. Doherty
    • 1
  • Roberta M. Ray
    • 5
  • Ming Gang Lin
    • 6
    • 7
  • Helge Stalsberg
    • 8
  • Dao Li Gao
    • 9
  • Ziding Feng
    • 10
  • David B. Thomas
    • 2
    • 11
  • Chu Chen
    • 2
    • 3
  1. 1.Program in Epidemiology, Division of Public Health SciencesFred Hutchinson Cancer Research CenterSeattleUSA
  2. 2.Department of EpidemiologyUniversity of WashingtonSeattleUSA
  3. 3.Program in Epidemiology, Division of Public Health SciencesFred Hutchinson Cancer Research CenterSeattleUSA
  4. 4.Zhongshan HospitalFudan UniversityShanghaiChina
  5. 5.Program in Epidemiology, Division of Public Health SciencesFred Hutchinson Cancer Research CenterSeattleUSA
  6. 6.Program in Cancer Biology, Division of Public Health SciencesFred Hutchinson Cancer Research CenterSeattleUSA
  7. 7.Division of Human BiologyFred Hutchinson Cancer Research CenterSeattleUSA
  8. 8.Institute of Medical BiologyUniversity of TromsøTromsøNorway
  9. 9.Department of Epidemiology, Zhongshan Hospital Cancer CenterFudan UniversityShanghaiChina
  10. 10.Program in Biostatistics and Bioinformatics, Division of Public Health SciencesFred Hutchinson Cancer Research CenterSeattleUSA
  11. 11.Program in Epidemiology, Division of Public Health SciencesFred Hutchinson Cancer Research CenterSeattleUSA

Personalised recommendations