Breast Cancer Research and Treatment

, Volume 107, Issue 1, pp 133–138 | Cite as

Circulating endothelial progenitor cells correlate to stage in patients with invasive breast cancer

  • Rakhi P. Naik
  • David Jin
  • Ellen Chuang
  • Ellen G. Gold
  • Eleni A. Tousimis
  • Anne L. Moore
  • Paul J. Christos
  • Tatiana de Dalmas
  • Diana Donovan
  • Shahin Rafii
  • Linda T. VahdatEmail author
Preclinical Study/Clinical Trial/Epidemiology/Invited Commentary


Tumor growth and metastasis is dependent on the formation and assembly of new blood vessels, a process known as neo-angiogenesis. Both pre-existing and circulating vascular cells have been shown to contribute to the assembly of tumor neo-vessels in specific tumors. Mobilization of endothelial progenitor cells (EPCs) from the bone marrow constitutes a crucial step in the formation of de novo blood vessels, and levels of peripheral blood EPCs have been shown to be increased in certain malignant states. However, the role of circulating EPCs in breast cancer is largely unknown. We recruited twenty-five patients with biopsy-proven invasive breast cancer at Weill Cornell Breast Center to participate in a pilot study investigating the correlation of circulating EPCs to extent of disease and initiation of chemotherapy. For each patient, a baseline sample was drawn before systemic treatment, and for seventeen of those patients, a second sample was taken after the first round of chemotherapy. Levels of peripheral blood EPCs, as defined by co-expression of CD133 and VEGFR2, were quantified by flow cytometry. Breast cancer patients with stage III & IV disease had statistically higher levels of circulating EPCs than did patients with stage I & II disease (median = 165,000 EPCs/5 × 106MNCs vs. median = 6,920 EPCs/5 × 106MNCs, respectively, P < 0.0001). In addition, in late-stage patients, levels of EPCs demonstrated a statistically significant drop after initiation of chemotherapy (median = 162,500 EPCs/5 × 106MNCs [pre] vs. median = 117,500 EPCs/5 × 106MNCs [post], P = 0.01). These results suggest that circulating EPCs may serve as a potential tumor biomarker in breast cancer and that EPCs may represent a plausible target for future therapeutic intervention.


Angiogenesis Circulating endothelial progenitor cells Breast cancer 



Supported by the Mentored Medical Student in Clinical Research Program (General Clinical Research Center/National Institutes of Health Grant M01RR00047), Madeline & Stephen Anbinder Clinical Scholar Award, and Anne Moore Breast Cancer Research Fund.

We thank David Nanus, MD, for comments on the manuscript.


  1. 1.
    Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49(23):6449–6465PubMedGoogle Scholar
  2. 2.
    Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1(1):27–31PubMedCrossRefGoogle Scholar
  3. 3.
    Folkman J (1995) Seminars in medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis. N Engl J Med 333(26):1757–1763PubMedCrossRefGoogle Scholar
  4. 4.
    Rafii S (2000) Circulating endothelial precursor cells, mystery, reality and promise. J Clin Invest 105:17–19PubMedCrossRefGoogle Scholar
  5. 5.
    Stoll BR, Migliorini C, Kadambi A, Munn LL, Jain RK (2003) A mathematical model of the contribution of endothelial progenitor cells to angiogenesis in tumors: implications for antiangiogenic therapy. Blood 102(7):2555–2561PubMedCrossRefGoogle Scholar
  6. 6.
    Vajkoczy P, Blum S, Lamparter M, Mailhammer R, Erber R, Engelhardt B et al (2003) Multistep nature of microvascular recruitment of ex vivo-expanded embryonic endothelial progenitor cells during tumor angiogenesis. J Exp Med 197(12):1755–1765PubMedCrossRefGoogle Scholar
  7. 7.
    Lyden D, Hattori K, Dias S, Witte L, Hackett N, Crystal R et al (2001) Impaired recruitment of bone marrow derived endothelial and a hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7:1194–1201PubMedCrossRefGoogle Scholar
  8. 8.
    Peichev M, Naiyer A, Hicklin D, Witte L, Rafii S (2000) Expression of AC133 and VEFGR-2(KDR) by human CD34+ cells identifies a population of endothelial precursor cells. Blood 95:952–958PubMedGoogle Scholar
  9. 9.
    Gehling UM, Ergun S, Schumacher U, Wagener C, Pantel K, Otte M et al (2000) In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood 95(10):3106–3112PubMedGoogle Scholar
  10. 10.
    Quirici N, Soligo D, Caneva L, Servida F, Bossolasco P, Deliliers GL (2001) Differentiation and expansion of endothelial cells from human bone marrow CD133(+) cells. Br J Haematol 115(1):186–194PubMedCrossRefGoogle Scholar
  11. 11.
    Furstenberger G, Moos Rv, Lucas R, Thurlimann B, Senn H, Hamacher J et al (2006) Circulating endothelial cells and angiogenic serum factors during neoadjuvant chemotherapy of primary breast cancer. Br J Cancer 94:524–531PubMedCrossRefGoogle Scholar
  12. 12.
    Zhang H, Vakil V, Braunstein M, Smith EL, Maroney J, Chen L et al (2005) Circulating endothelial progenitor cells in multiple myeloma: implications and significance. Blood 105(8):3286–3294PubMedCrossRefGoogle Scholar
  13. 13.
    Massa M, Rosti V, Ramajoli I, Campanelli R, Pecci A, Viarengo G et al (2005) Circulating CD34+, CD133+, and vascular endothelial growth factor receptor 2-positive endothelial progenitor cells in myelofibrosis with myeloid metaplasia. J Clin Oncol 23(24):5688–5695PubMedCrossRefGoogle Scholar
  14. 14.
    Dome B, Timar J, Dobos J, Meszaros L, Raso E, Paku S et al (2006) Identification and clinical significance of circulating endothelial progenitor cells in human non-small cell lung cancer. Cancer Res 66(14):7341–7347PubMedCrossRefGoogle Scholar
  15. 15.
    Friedrich EB, Walenta K, Scharlau J, Nickenig G, Werner N (2006) CD34-/CD133+/VEGFR-2+ endothelial progenitor cell subpopulation with potent vasoregenerative capacities. Circ Res 98(3):e20–e25PubMedCrossRefGoogle Scholar
  16. 16.
    Numaguchi Y, Sone T, Okumura K, Ishii M, Morita Y, Kubota R et al (2006) The impact of the capability of circulating progenitor cell to differentiate on myocardial salvage in patients with primary acute myocardial infarction. Circulation 114(1 Suppl):I114–I119PubMedGoogle Scholar
  17. 17.
    Singletary SE, Allred C, Ashley P, Bassett LW, Berry D, Bland KI et al (2002) Revision of the American Joint Committee on Cancer staging system for breast cancer. J Clin Oncol 20(17):3628–3636PubMedCrossRefGoogle Scholar
  18. 18.
    Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92(3):205–216PubMedCrossRefGoogle Scholar
  19. 19.
    Bertolini F, Thomas T, Battaglia M, Gibelli N, Pedrazzoli P, Robustelli della Cuna G (1997) A new ‘two-step’ procedure for 4.5 log depletion of T and B cells in allogeneic transplantation and of neoplastic cells in autologous transplantation. Bone Marrow Transplant 19:615–619PubMedCrossRefGoogle Scholar
  20. 20.
    Munoz R, Shaked Y, Bertolini F, Emmenegger U, Man S, Kerbel RS (2005) Anti-angiogenic treatment of breast cancer using metronomic low-dose chemotherapy. Breast 14(6):466–479PubMedCrossRefGoogle Scholar
  21. 21.
    Gill M, Dias S, Hattori K, Lane W, Rivera L, Hicklin D et al (2001) Vascular trauma induces rapid but transient mobiliation of VEGFR2+AC133+ endothelial precursor cells. Circ Res 88:167–174PubMedGoogle Scholar
  22. 22.
    Kong D, Melo LG, Gnecchi M, Zhang L, Mostoslavsky G, Liew CC et al (2004) Cytokine-induced mobilization of circulating endothelial progenitor cells enhances repair of injured arteries. Circulation 110(14):2039–2046PubMedCrossRefGoogle Scholar
  23. 23.
    Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A et al (2005) Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 353(10):999–1007PubMedCrossRefGoogle Scholar
  24. 24.
    Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351(27):2817–2826PubMedCrossRefGoogle Scholar
  25. 25.
    Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350(23):2335–2342PubMedCrossRefGoogle Scholar
  26. 26.
    Yang JC, Haworth L, Sherry RM, Hwu P, Schwartzentruber DJ, Topalian SL et al (2003) A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 349(5):427–434PubMedCrossRefGoogle Scholar
  27. 27.
    Miller KD, Trigo JM, Wheeler C, Barge A, Rowbottom J, Sledge G et al (2005) A multicenter phase II trial of ZD6474, a vascular endothelial growth factor receptor-2 and epidermal growth factor receptor tyrosine kinase inhibitor, in patients with previously treated metastatic breast cancer. Clin Cancer Res 11(9):3369–3376PubMedCrossRefGoogle Scholar
  28. 28.
    Johnson DH, Fehrenbacher L, Novotny WF, Herbst RS, Nemunaitis JJ, Jablons DM et al (2004) Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol 22(11):2184–2191PubMedCrossRefGoogle Scholar
  29. 29.
    Cobleigh MA, Langmuir VK, Sledge GW, Miller KD, Haney L, Novotny WF et al (2003) A phase I/II dose-escalation trial of bevacizumab in previously treated metastatic breast cancer. Semin Oncol 30(5 Suppl 16):117–124PubMedCrossRefGoogle Scholar
  30. 30.
    Heymach J (2005) ZD 6474-clinical experience to date. Br J Cancer 92(Suppl 1):S14–S20PubMedCrossRefGoogle Scholar
  31. 31.
    Gingrich DE, Reddy DR, Iqbal MA, Singh J, Aimone LD, Angeles TS et al (2003) A new class of potent vascular endothelial growth factor receptor tyrosine kinase inhibitors: structure-activity relationships for a series of 9-alkoxymethyl-12-(3-hydroxypropyl)indeno[2,1-a]pyrrolo[3,4-c]carbazole-5- ones and the identification of CEP-5214 and its dimethylglycine ester prodrug clinical candidate CEP-7055. J Med Chem 46(25):5375–5388PubMedCrossRefGoogle Scholar
  32. 32.
    Ruggeri B, Singh J, Gingrich D, Angeles T, Albom M, Yang S et al (2003) CEP-7055: a novel, orally active pan inhibitor of vascular endothelial growth factor receptor tyrosine kinases with potent antiangiogenic activity and antitumor efficacy in preclinical models. Cancer Res 63(18):5978–5991PubMedGoogle Scholar
  33. 33.
    Emanuel S, Gruninger RH, Fuentes-Pesquera A, Connolly PJ, Seamon JA, Hazel S et al (2004) A vascular endothelial growth factor receptor-2 kinase inhibitor potentiates the activity of the conventional chemotherapeutic agents paclitaxel and doxorubicin in tumor xenograft models. Mol Pharmacol 66(3):635–647PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Rakhi P. Naik
    • 1
  • David Jin
    • 2
  • Ellen Chuang
    • 1
  • Ellen G. Gold
    • 1
  • Eleni A. Tousimis
    • 3
  • Anne L. Moore
    • 1
  • Paul J. Christos
    • 4
  • Tatiana de Dalmas
    • 1
  • Diana Donovan
    • 1
  • Shahin Rafii
    • 2
  • Linda T. Vahdat
    • 1
    Email author
  1. 1.Division of Hematology/Oncology, Department of Medicine, New York Presbyterian HospitalWeill Medical College of Cornell UniversityNew YorkUSA
  2. 2.Department of Genetic Medicine, New York Presbyterian HospitalWeill Medical College of Cornell UniversityNew YorkUSA
  3. 3.Department of Surgery, New York Presbyterian HospitalWeill Medical College of Cornell UniversityNew YorkUSA
  4. 4.Department of Public Health, New York Presbyterian HospitalWeill Medical College of Cornell UniversityNew YorkUSA

Personalised recommendations