Breast Cancer Research and Treatment

, Volume 106, Issue 3, pp 439–451 | Cite as

Risk of second non-hematological malignancies among 376,825 breast cancer survivors

  • Linda Morris Brown
  • Bingshu E. Chen
  • Ruth M. Pfeiffer
  • Catherine Schairer
  • Per Hall
  • Hans Storm
  • Eero Pukkala
  • Frøydis Langmark
  • Magnus Kaijser
  • Michael Andersson
  • Heikki Joensuu
  • Sophie D. Fosså
  • Lois B. Travis


Breast cancer survivors are at increased risk of treatment-related second cancers. This study is the first to examine risk 30 or more years after diagnosis and to present absolute risks of second cancer which accounts for competing mortality. We identified 23,158 second non-hematological malignancies excluding breast in a population-based cohort of 376,825 one-year survivors of breast cancer diagnosed from 1943 to 2002 and reported to four Scandinavian cancer registries. We calculated standardized incidence ratios (SIR) and utilized a competing-risk model to calculate absolute risk of developing second cancers. The overall SIR for second cancers was 1.15 (95% confidence interval [CI] = 1.14–1.17). The SIR for potentially radiotherapy-associated cancers 30 or more years after breast cancer diagnosis was 2.19 (95% CI = 1.87–2.55). However, the largest SIRs were observed for women aged <40 years followed for 1–9 years. At 20 years after breast cancer diagnosis, the absolute risk of developing a second cancer ranged from 0.6 to 10.3%, depending on stage and age; the difference in the absolute risk compared to the background population was greatest for women aged <40 years with localized disease, 2.3%. At 30 years post breast cancer diagnosis, this difference reached 3.2%. These risks were small compared to the corresponding risk of dying from breast cancer. Although the absolute risks were small, we found persistent risks of second non-hematological malignancies excluding breast 30 or more years after breast cancer diagnosis, particularly for women diagnosed at young ages with localized disease.


Absolute risks Breast cancer Cohort study Competing risks Risk Survivor Second cancer Second malignancies Treatment 



This research was supported by the Intramural Research Program of the National Cancer Institute, Division of Cancer Epidemiology and Genetics. We thank Jeremy Miller, Information Management Services, Inc., Rockville, MD, for exceptional data management and computer support and Dr. Marilyn Stovall and Cathy Kasper, The University of Texas M. D. Anderson Cancer Center, Houston, TX, for estimation of radiation doses.


  1. 1.
    Colditz GA, Baer HJ, Tamimi RM (2006) Breast cancer. In: Schottenfeld D, Fraumeni JF Jr (eds) Cancer epidemiology and prevention. Oxford University Press, New York, pp 995–1012Google Scholar
  2. 2.
    American Cancer Society (2006) Cancer Facts and Figures 2006. American Cancer Society, AtlantaGoogle Scholar
  3. 3.
    Ron E (2003) Cancer risks from medical radiation. Health Phys 85:47–59PubMedCrossRefGoogle Scholar
  4. 4.
    Rowland J, Mariotto A, Aziz N, Tesauro G, Feuer EJ, Blackman D, Thompson P, Pollack L (2004) Cancer survivorship—United States, 1971–2001. MMWR Morbidity and Mortality Weekly Report 53:526–529Google Scholar
  5. 5.
    Van Leeuwen FE, Travis LB (2005) Second cancers. In: De Vita VT, Hellman S, Rosenberg SA (eds) Cancer: Principles and practice of oncology. Lippincott Williams & Wilkins, Philadelphia, pp 2575–2602Google Scholar
  6. 6.
    Mellemkjaer L, Friis S, Olsen JH, Scelo G, Hemminki K, Tracey E, Andersen A, Brewster DH, Pukkala E, McBride ML, Kliewer EV, Tonita JM, Kee-Seng C, Pompe-Kirn V, Martos C, Jonasson JG, Boffetta P, Brennan P (2006) Risk of second cancer among women with breast cancer. Int J Cancer 118:2285–2292PubMedCrossRefGoogle Scholar
  7. 7.
    Matesich SM, Shapiro CL (2003) Second cancers after breast cancer treatment. Semin Oncol 30:740–748PubMedCrossRefGoogle Scholar
  8. 8.
    Bernstein L, Deapen D, Cerhan JR, Schwartz SM, Liff J, McGann-Maloney E, Perlman JA, Ford L (1999) Tamoxifen therapy for breast cancer and endometrial cancer risk. J Natl Cancer Inst 91:1654–1662PubMedCrossRefGoogle Scholar
  9. 9.
    Curtis RE, Boice JD Jr., Shriner DA, Hankey BF, Fraumeni JF Jr. (1996) Second cancers after adjuvant tamoxifen therapy for breast cancer. J Natl Cancer Inst 88:832–834PubMedCrossRefGoogle Scholar
  10. 10.
    Swerdlow AJ, Jones ME (2005) Tamoxifen treatment for breast cancer and risk of endometrial cancer: a case-control study. J Natl Cancer Inst 97:375–384PubMedGoogle Scholar
  11. 11.
    Boice JD Jr (2006) Ionizing radiation. In: Schottenfeld D, Fraumeni JF Jr (eds) Cancer epidemiology and prevention. Oxford University Press, New York, pp 259–293Google Scholar
  12. 12.
    Soerjomataram I, Louwman WJ, de Vries E, Lemmens VE, Klokman WJ, Coebergh JW (2005) Primary malignancy after primary female breast cancer in the South of the Netherlands, 1972–2001. Breast Cancer Res Treat 93:91–95PubMedCrossRefGoogle Scholar
  13. 13.
    Rubino C, Shamsaldin A, Le MG, Labbe M, Guinebretiere JM, Chavaudra J, de Vathaire F (2005) Radiation dose and risk of soft tissue and bone sarcoma after breast cancer treatment. Breast Cancer Res Treat 89:277–288PubMedCrossRefGoogle Scholar
  14. 14.
    Roychoudhuri R, Evans H, Robinson D, Moller H (2004) Radiation-induced malignancies following radiotherapy for breast cancer. Br J Cancer 91:868–872PubMedGoogle Scholar
  15. 15.
    Deutsch M, Land SR, Begovic M, Wieand HS, Wolmark N, Fisher B (2003) The incidence of lung carcinoma after surgery for breast carcinoma with and without postoperative radiotherapy. Results of National Surgical Adjuvant Breast and Bowel Project (NSABP) clinical trials B-04 and B-06. Cancer 98:1362–1368PubMedCrossRefGoogle Scholar
  16. 16.
    Matheson JB, Burmeister BH, Smithers BM, Gotley D, Harvey JA, Doyle L (2002) Second primary oesophageal cancer following radiation for breast cancer. Radiother Oncol 65:159–163PubMedCrossRefGoogle Scholar
  17. 17.
    Rubino C, de Vathaire F, Diallo I, Shamsaldin A, Grimaud E, Labbe M, Contesso G, Le M (2002) Radiation dose, chemotherapy and risk of lung cancer after breast cancer treatment. Breast Cancer Res Treat 75:15–24PubMedCrossRefGoogle Scholar
  18. 18.
    Huang J, Mackillop WJ (2001) Increased risk of soft tissue sarcoma after radiotherapy in women with breast carcinoma. Cancer 92:172–180PubMedCrossRefGoogle Scholar
  19. 19.
    Ahsan H, Neugut AI (1998) Radiation therapy for breast cancer and increased risk for esophageal carcinoma. Ann Int Med 128:114–117PubMedGoogle Scholar
  20. 20.
    Karlsson P, Holmberg E, Johansson KA, Kindblom LG, Carstensen J, Wallgren A (1996) Soft tissue sarcoma after treatment for breast cancer. Radiother Oncol 38:25–31PubMedCrossRefGoogle Scholar
  21. 21.
    Doherty MA, Rodger A, Langlands AO, Kerr GR (1993) Multiple primary tumours in patients treated with radiotherapy for breast cancer. Radiother Oncol 26:125–131PubMedCrossRefGoogle Scholar
  22. 22.
    Neugut AI, Robinson E, Lee WC, Murray T, Karwoski K, Kutcher GJ (1993) Lung cancer after radiation therapy for breast cancer. Cancer 71:3054–3057PubMedCrossRefGoogle Scholar
  23. 23.
    Shannon VR, Nesbitt JC, Libshitz HI (1995) Malignant pleural mesothelioma after radiation therapy for breast cancer. A report of two additional patients. Cancer 76:437–441Google Scholar
  24. 24.
    Ewertz M, Mouridsen HT (1985) Second cancer following cancer of the female breast in Denmark, 1943–80. Natl Cancer Inst Monogr 68:325–329PubMedGoogle Scholar
  25. 25.
    Travis LB, Aziz N (2007) Therapy-induced neoplasms. In: Camus P, Rosenow E (eds) Drug-induced and iatrogenic lung disease. Hodder Arnold, LondonGoogle Scholar
  26. 26.
    Cox J (1994) Moss’ radiation oncology rationale, technique, results. Mosby, St. LouisGoogle Scholar
  27. 27.
    Breslow NE, Day NE (1987) Statistical methods in cancer research. International Agency for Research on Cancer, Lyon, FranceGoogle Scholar
  28. 28.
    Sahai H, Khurshid A (1996) Statistics in epidemiology: Methods, techniques, and applications. CRC Press, Boca RatonGoogle Scholar
  29. 29.
    Preston DL, Lubin JL, Pierce DA (1991) EPICURE user’s guide. HiroSoft International Corporation, SeattleGoogle Scholar
  30. 30.
    Chen BE, Cook RJ (2004) Tests for multivariate recurrent events in the presence of a terminal event. Biostatistics 5:129–143PubMedCrossRefGoogle Scholar
  31. 31.
    Miller DP, Liu G, De VI, Lynch TJ, Wain JC, Su L, Christiani DC (2002) Combinations of the variant genotypes of GSTP1, GSTM1, and p53 are associated with an increased lung cancer risk. Cancer Res 62:2819–2823PubMedGoogle Scholar
  32. 32.
    Rebbeck TR (1999) Inherited genetic predisposition in breast cancer. A population-based perspective. Cancer 86:2493–2501PubMedCrossRefGoogle Scholar
  33. 33.
    Maggard MA, O’Connell JB, Lane KE, Liu JH, Etzioni DA, Ko CY (2003) Do young breast cancer patients have worse outcomes? J Surg Res 113:109–113PubMedCrossRefGoogle Scholar
  34. 34.
    Colleoni M, Rotmensz N, Robertson C, Orlando L, Viale G, Renne G, Luini A, Veronesi P, Intra M, Orecchia R, Catalano G, Galimberti V, Nole F, Martinelli G, Goldhirsch A (2002) Very young women (<35 years) with operable breast cancer: features of disease at presentation. Ann Oncol 13:273–279PubMedCrossRefGoogle Scholar
  35. 35.
    Chung M, Chang HR, Bland KI, Wanebo HJ (1996) Younger women with breast carcinoma have a poorer prognosis than older women. Cancer 77:97–103PubMedCrossRefGoogle Scholar
  36. 36.
    Walker RA, Lees E, Webb MB, Dearing SJ (1996) Breast carcinomas occurring in young women (<35 years) are different. Br J Cancer 74:1796–1800PubMedGoogle Scholar
  37. 37.
    Prochazka M, Hall P, Gagliardi G, Granath F, Nilsson BN, Shields PG, Tennis M, Czene K (2005) Ionizing radiation and tobacco use increases the risk of a subsequent lung carcinoma in women with breast cancer: case-only design. J Clin Oncol 23:7467–7474PubMedCrossRefGoogle Scholar
  38. 38.
    Ford MB, Sigurdson AJ, Petrulis ES, Ng CS, Kemp B, Cooksley C, McNeese M, Selwyn BJ, Spitz MR, Bondy ML (2003) Effects of smoking and radiotherapy on lung carcinoma in breast carcinoma survivors. Cancer 98:1457–1464PubMedCrossRefGoogle Scholar
  39. 39.
    Gilbert ES, Stovall M, Gospodarowicz M, Van Leeuwen FE, Andersson M, Glimelius B, Joensuu T, Lynch CF, Curtis RE, Holowaty E, Storm H, Pukkala E, van’t Veer MB, Fraumeni JF, Boice JD Jr., Clarke EA, Travis LB (2003) Lung cancer after treatment for Hodgkin’s disease: focus on radiation effects. Radiat Res 159:161–173PubMedCrossRefGoogle Scholar
  40. 40.
    Travis LB, Gospodarowicz M, Curtis RE, Clarke EA, Andersson M, Glimelius B, Joensuu T, Lynch CF, Van Leeuwen FE, Holowaty E, Storm H, Glimelius I, Pukkala E, Stovall M, Fraumeni JF Jr, Boice JD Jr, Gilbert E (2002) Lung cancer following chemotherapy and radiotherapy for Hodgkin’s disease. J Natl Cancer Inst 94:182–192PubMedGoogle Scholar
  41. 41.
    Anonymous (2000) United National Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Report to the General Assembly, with scientific annexes. Sources and effects of ionizing radiation. United Nations, New YorkGoogle Scholar
  42. 42.
    Van Leeuwen FE, Klokman WJ, Stovall M, Hagenbeek A, van den Belt-Dusebout AW, Noyon R, Boice JD Jr., Burgers JM, Somers R (1995) Roles of radiotherapy and smoking in lung cancer following Hodgkin’s disease. J Natl Cancer Inst 87:1530–1537PubMedCrossRefGoogle Scholar
  43. 43.
    Neugut AI, Murray T, Santos J, Amols H, Hayes MK, Flannery JT, Robinson E (1994) Increased risk of lung cancer after breast cancer radiation therapy in cigarette smokers. Cancer 73:1615–1620PubMedCrossRefGoogle Scholar
  44. 44.
    Prochazka M, Hall P, Granath F, Czene K (2006) Family history of breast cancer and young age at diagnosis of breast cancer increase risk of second primary malignancies in women: a population-based cohort study. Br J Cancer 95:1291–1295PubMedCrossRefGoogle Scholar
  45. 45.
    Raymond JS, Hogue CJ (2006) Multiple primary tumours in women following breast cancer, 1973–2000. Br J Cancer 94:1745–1750PubMedGoogle Scholar
  46. 46.
    Yu GP, Schantz SP, Neugut AI, Zhang ZF (2006) Incidences and trends of second cancers in female breast cancer patients: a fixed inception cohort-based analysis (United States). Cancer Causes Control 17:411–420PubMedCrossRefGoogle Scholar
  47. 47.
    Levi F, Te VC, Randimbison L, La Vecchia C (2003) Cancer risk in women with previous breast cancer. Ann Oncol 14:71–73PubMedCrossRefGoogle Scholar
  48. 48.
    Evans HS, Lewis CM, Robinson D, Bell CM, Moller H, Hodgson SV (2001) Incidence of multiple primary cancers in a cohort of women diagnosed with breast cancer in southeast England. Br J Cancer 84:435–440PubMedCrossRefGoogle Scholar
  49. 49.
    Volk N, Pompe-Kirn V (1997) Second primary cancers in breast cancer patients in Slovenia. Cancer Causes Control 8:764–770PubMedCrossRefGoogle Scholar
  50. 50.
    Harvey EB, Brinton LA (1985) Second cancer following cancer of the breast in Connecticut, 1935–82. Natl Cancer Inst Monogr 68:99–112PubMedGoogle Scholar
  51. 51.
    Teppo L, Pukkala E, Saxen E (1985) Multiple cancer–an epidemiologic exercise in Finland. J Natl Cancer Inst 75:207–217PubMedGoogle Scholar
  52. 52.
    Clarke M, Collins R, Darby S, Davies C, Elphinstone P, Evans E, Godwin J, Gray R, Hicks C, James S, MacKinnon E, McGale P, McHugh T, Peto R, Taylor C, Wang Y (2005) Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 366:2087–2106PubMedGoogle Scholar
  53. 53.
    Darby SC, McGale P, Taylor CW, Peto R (2005) Long-term mortality from heart disease and lung cancer after radiotherapy for early breast cancer: prospective cohort study of about 300,000 women in US SEER cancer registries. Lancet Oncol 6:557–565PubMedCrossRefGoogle Scholar
  54. 54.
    Kirova YM, Vilcoq JR, Asselain B, Sastre-Garau X, Fourquet A (2005) Radiation-induced sarcomas after radiotherapy for breast carcinoma: a large-scale single-institution review. Cancer 104:856–863PubMedCrossRefGoogle Scholar
  55. 55.
    Zablotska LB, Chak A, Das A, Neugut AI (2005) Increased risk of squamous cell esophageal cancer after adjuvant radiation therapy for primary breast cancer. Am J Epidemiol 161:330–337PubMedCrossRefGoogle Scholar
  56. 56.
    Rubino C, de Vathaire F, Shamsaldin A, Labbe M, Le MG (2003) Radiation dose, chemotherapy, hormonal treatment and risk of second cancer after breast cancer treatment. Br J Cancer 89:840–846PubMedCrossRefGoogle Scholar
  57. 57.
    Zablotska LB, Neugut AI (2003) Lung carcinoma after radiation therapy in women treated with lumpectomy or mastectomy for primary breast carcinoma. Cancer 97:1404–1411PubMedCrossRefGoogle Scholar
  58. 58.
    Prochazka M, Granath F, Ekbom A, Shields PG, Hall P (2002) Lung cancer risks in women with previous breast cancer. Eur J Cancer 38:1520–1525PubMedCrossRefGoogle Scholar
  59. 59.
    Yap J, Chuba PJ, Thomas R, Aref A, Lucas D, Severson RK, Hamre M (2002) Sarcoma as a second malignancy after treatment for breast cancer. Int J Radiat Oncol Biol Phys 52:1231–1237PubMedCrossRefGoogle Scholar
  60. 60.
    Scholl B, Reis ED, Zouhair A, Chereshnev I, Givel JC, Gillet M (2001) Esophageal cancer as second primary tumor after breast cancer radiotherapy. Am J Surg 182:476–480PubMedCrossRefGoogle Scholar
  61. 61.
    Sun EC, Curtis R, Melbye M, Goedert JJ (1999) Salivary gland cancer in the United States. Cancer Epidemiol Biomarkers Prev 8:1095–1100PubMedGoogle Scholar
  62. 62.
    Saku T, Hayashi Y, Takahara O, Matsuura H, Tokunaga M, Tokunaga M, Tokuoka S, Soda M, Mabuchi K, Land CE (1997) Salivary gland tumors among atomic bomb survivors, 1950–1987. Cancer 79:1465–1475PubMedCrossRefGoogle Scholar
  63. 63.
    Travis LB, Curtis RE, Inskip PD, Hankey BF (1995) Re: Lung cancer risk and radiation dose among women treated for breast cancer. J Natl Cancer Inst 87:60–61PubMedCrossRefGoogle Scholar
  64. 64.
    Taghian A, de Vathaire F, Terrier P, Le M, Auquier A, Mouriesse H, Grimaud E, Sarrazin D, Tubiana M (1991) Long-term risk of sarcoma following radiation treatment for breast cancer. Int J Radiat Oncol Biol Phys 21:361–367PubMedGoogle Scholar
  65. 65.
    Adami HO, Bergkvist L, Krusemo U, Persson I (1984) Breast-cancer as a risk factor for other primary malignant diseases—a nationwide cohort study. J Natl Cancer Inst 73:1049–1055PubMedGoogle Scholar
  66. 66.
    Eerola H, Pukkala E, Pyrhonen S, Blomqvist C, Sankila R, Nevanlinna H (2001) Risk of cancer in BRCA1 and BRCA2 mutation-positive and -negative breast cancer families (Finland). Cancer Causes Control 12:739–746PubMedCrossRefGoogle Scholar
  67. 67.
    Schairer C, Mink PJ, Carroll L, Devesa SS (2004) Probabilities of death from breast cancer and other causes among female breast cancer patients. J Natl Cancer Inst 96:1311–1321PubMedGoogle Scholar
  68. 68.
    Chen Y, Thompson W, Semenciw R, Mao Y (1999) Epidemiology of contralateral breast cancer. Cancer Epidemiol Biomarkers Prev 8:855–861PubMedGoogle Scholar
  69. 69.
    Boice JD Jr., Harvey EB, Blettner M, Stovall M, Flannery JT (1992) Cancer in the contralateral breast after radiotherapy for breast cancer. N Engl J Med 326:781–785PubMedCrossRefGoogle Scholar
  70. 70.
    Satagopan JM, Ben Porat L, Berwick M, Robson M, Kutler D, Auerbach AD (2004) A note on competing risks in survival data analysis. Br J Cancer 91:1229–1235PubMedCrossRefGoogle Scholar
  71. 71.
    van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, van d V, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009PubMedCrossRefGoogle Scholar
  72. 72.
    Buyse M, Loi S, van’t Veer L, Viale G, Delorenzi M, Glas AM, d’Assignies MS, Bergh J, Lidereau R, Ellis P, Harris A, Bogaerts J, Therasse P, Floore A, Amakrane M, Piette F, Rutgers E, Sotiriou C, Cardoso F, Piccart MJ (2006) Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 98:1183–1192PubMedCrossRefGoogle Scholar
  73. 73.
    Sorlie T, Wang Y, Xiao C, Johnsen H, Naume B, Samaha RR, Borresen-Dale AL (2006) Distinct molecular mechanisms underlying clinically relevant subtypes of breast cancer: gene expression analyses across three different platforms. BMC Genomics 7:127PubMedCrossRefGoogle Scholar
  74. 74.
    Stovall M, Smith SA, Rosenstein M (1989) Tissue doses from radiotherapy of cancer of the uterine cervix. Med Phys 16:726–733PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Linda Morris Brown
    • 1
  • Bingshu E. Chen
    • 1
  • Ruth M. Pfeiffer
    • 1
  • Catherine Schairer
    • 1
  • Per Hall
    • 2
  • Hans Storm
    • 3
  • Eero Pukkala
    • 4
  • Frøydis Langmark
    • 5
  • Magnus Kaijser
    • 2
  • Michael Andersson
    • 3
  • Heikki Joensuu
    • 6
  • Sophie D. Fosså
    • 7
  • Lois B. Travis
    • 1
  1. 1.Division of Cancer Epidemiology and Genetics, National Cancer InstituteNational Institutes of Health (NIH), Department of Health and Human ServicesBethesdaUSA
  2. 2.Karolinska InstitutetStockholmSweden
  3. 3.Danish Cancer SocietyCopenhagenDenmark
  4. 4.Finnish Cancer RegistryHelsinkiFinland
  5. 5.Norwegian Cancer RegistryOsloNorway
  6. 6.Helsinki University Central HospitalHelsinkiFinland
  7. 7.Rikshospitalet-Radiumhospitalet Medical CentreOsloNorway

Personalised recommendations