Primary systemic therapy does not eradicate disseminated tumor cells in breast cancer patients

  • Sven Becker
  • Erich Solomayer
  • Graziella Becker-Pergola
  • Diethelm Wallwiener
  • Tanja Fehm
Preclinical Study/Clinical Trial/Epidemiology/Invited Commentary

Abstract

Introduction

The presence of disseminated tumor cells in the bone marrow of breast cancer patients has proven to be an independent prognostic factor. The aim of this study was to investigate the status of tumor cell dissemination after primary systemic therapy in relation to therapy response.

Methods

Bone marrow aspirates were obtained from 120 patients after completion of primary systemic therapy. Disseminated tumor cells were detected by immunocytochemistry using the APAAP method. Bone marrow status was correlated with clinicopathological factors as well as tumor response to primary systemic therapy.

Results

Sixty out of 120 patients had disseminated tumor cells in their bone marrow aspirates (50%). Response rates were 18% for pathologic complete remission, 52% for partial remission, 28% for no change and 3% for progression. Despite complete remission, 36% of these patients were bone marrow positive. In the partial remission group, the positivity rate was 48%. About 61% of patients with stable disease had disseminated tumor cells in their bone marrow. A trend to higher positivity rates was observed in the poor responder group compared to responders (61% vs. 38%, P = 0.1).

Conclusion

Primary systemic therapy does not completely eradicate disseminated tumor cells in the bone marrow of breast cancer patients. The biological role of persistent disseminated tumor cells needs to be further investigated to optimize current and future therapeutic strategies.

Keywords

Breast cancer Primary systemic therapy Disseminated tumor cells Neoadjuvant therapy 

References

  1. 1.
    Bonadonna G, Valagussa P, Brambilla C, Ferrari L, Moliterni A, Terenziani M, Zambetti M (1998) Primary chemotherapy in operable breast cancer. Eight year experience at the Milan Cancer Institute. J Clin Oncol 16:93–100PubMedGoogle Scholar
  2. 2.
    Fisher B, Bryant J, Wolmark N (1998) Effect of pre-operative chemotherapy on the outcome of women with operable breast cancer. J Clin Oncol 16:2672–2685PubMedGoogle Scholar
  3. 3.
    Van der Hage JA, van de Velde CJ, Julien JP, Tubiana-Hulin M, Vandervelden C, Duchateau L (2001) Preoperative chemotherapy in primary operable breast cancer: results from the European Organization for Research and Treatment of Cancer trial 10902. J Clin Oncol 19(22):4224–4237PubMedGoogle Scholar
  4. 4.
    von Minckwitz G, Raab G, Schütte M et al (2003) Dose-dense versus sequential Adriamycin/docetaxel combination as preoperative chemotherapy (pCHT) in operable breast cancer (T2–3, N0–2, M0): Primary endpoint analysis of the GEPARDUO study. Proc Am Soc Clin Oncol 21:43a, (abstr 168)Google Scholar
  5. 5.
    NSABP: The effect on primary tumor response of adding sequential Taxotere to Adriamycin and cyclophosphamide: Preliminary results of the NSABP Protocol B-27. Breast Cancer Res Treat 69:210, (abstr 5) 2001 (updated with personal communication 2002, 2003)Google Scholar
  6. 6.
    Cunningham JD, Weiss SE, Ahmed S, Bratton JM, Bleiweiss IJ, Tartter PI, Brower ST (1998) The efficacy of neoadjuvant chemotherapy compared to postoperative therapy in the treatment of locally advanced breast cancer. Cancer Invest 16:80–86PubMedGoogle Scholar
  7. 7.
    Fisher B, Brown A, Mamounas E, Wieand S, Robidoux A, Margolese RG, Cruz AB Jr, Fisher ER, Wickerham DL, Wolmark N, DeCillis A, Hoehn JL, Lees AW, Dimitrov NV (1997) Effect of preoperative chemotherapy on local-regional disease in women with operable breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B-18. J Clin Oncol 15:2483–2493PubMedGoogle Scholar
  8. 8.
    Braun S, Rosenberg R, Thorban S et al (2001) Implications of occult metastatic cells for systemic cancer treatment in patients with breast of gastrointestinal cancer. Semin Surg Oncol 20(4):334–346PubMedCrossRefGoogle Scholar
  9. 9.
    Waldmann V, Deichmann M, Jackel A (2001) Disseminated melanoma cells in blood and bone marrow. Significance and detection by potential tumor markers. Hautarzt 52(4):298–303PubMedCrossRefGoogle Scholar
  10. 10.
    Heiss MM, Simon EH, Beyer BC et al (2002) Minimal residual disease in gastric cancer: evidence of an independent prognostic relevance ofurokinase receptor expression by disseminated tumor cells in the bone marrow. J Clin Oncol 20(8):2005–2016PubMedCrossRefGoogle Scholar
  11. 11.
    Mansi JL., Easton D, Berger U et al (1991) Bone marrow micrometastases in primary breast cancer: prognostic significance after 6 years’ follow-up. Eur J Cancer 27:1552–1555PubMedCrossRefGoogle Scholar
  12. 12.
    Braun S, Pantel K, Muller P et al (2000) Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N Engl J Med 342:525–533PubMedCrossRefGoogle Scholar
  13. 13.
    Solomayer EF, Diel IJ, Salanti G et al (2001) Time independence of the prognostic impact of tumor cell detection in the bone marrow of primary breast cancer patients. Clin Cancer Res 7:4102–4108PubMedGoogle Scholar
  14. 14.
    Braun S, Vogl FD, Naume B, Janni W, Osborne MP, Coombes RC, Schlimok G, Diel IJ, Gerber B, Gebauer G, Pierga JY, Marth C, Oruzio D, Wiedswang G, Solomayer EF, Kundt G, Strobl B, Fehm T, Wong GY, Bliss J, Vincent-Salomon A, Pantel K (2005) A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med. 2005 Aug 25, 353(8):793–802Google Scholar
  15. 15.
    Becker S, Becker-Pergola G, Fehm T, Emig R, Wallwiener D, Solomayer EF (2005) Image Analysis Systems for the detection of disseminated breast cancer cells on bone marrow cytospins. J Clin Lab Anal 19:115–119PubMedCrossRefGoogle Scholar
  16. 16.
    Borgen E, Naume B, Nesland JM, Kvalheim G, Beiske K, Fodstad O et al (1999) Standardization of the immunological detection of cancer cells in bone marrow and blood: establishment of objective criteria for the evaluation of immunostained cells. Cytotherapy 5:377–388CrossRefGoogle Scholar
  17. 17.
    Smith IE, Lipton L (2001) Preoperative/neoadjuvant medical therapy for early breast cancer. Lancet Oncol 2(9):561–570PubMedCrossRefGoogle Scholar
  18. 18.
    Scholl SM, Beuzeboc P, Harris AL, Pierga JY, Asselain B, Palangie T, Dorval T, Jouve M, Dieras V, Pouillart P (1998) Is primary chemotherapy useful for all patients with primary invasive breast cancer ? Recent Res Cancer Res 152:217–226Google Scholar
  19. 19.
    Smith IC, Heys SD, Hutcheon AW, Miller ID, Payne S, Gilbert FJ, Ah-See AK, Eremin O, Walker LG, Sarkar TK, Eggleton SP, Ogston KN (2002) Neoadjuvant chemotherapy in breast cancer: significantly enhanced response with docetaxel. J Clin Oncol 20(6):1456–1466PubMedCrossRefGoogle Scholar
  20. 20.
    Funke I, Schraut W (1998) Meta-analyses of studies on bone marrow micrometastases: an independent prognostic impact remains to be substantiated. J Clin Oncol 16:557–566PubMedGoogle Scholar
  21. 21.
    Braun S, Pantel K, Muller P, Janni W, Hepp F, Kentenich CR, Gastroph S, Wischnik A, Dimpfl T, Kindermann G, Riethmuller G, Schlimok G (2000) Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N Engl J Med 342:525–533PubMedCrossRefGoogle Scholar
  22. 22.
    Mansi JL, Gogas H, Bliss JM, Gazet JC, Berger U, Coombes RC (1999) Outcome of primary breast cancer patients with micrometastases: a long-term follow-up study. Lancet 354:197–202PubMedCrossRefGoogle Scholar
  23. 23.
    Diel IJ, Kaufmann M, Solomayer E-F, Wallwiener D, Gollan C,Goerner R, Kaul S, Costa SD, von Minckwitz G, Holle R, Bastert R (1997) Prognostische Bedeutung des Tumorzellnachweises im Knochenmark im Vergleich zum Nodalstatus beim primären Mammakarzinom. Geburtsh u Frauenheilk 57:333–341CrossRefGoogle Scholar
  24. 24.
    Naume B, Wiedswang G, Borgen E, Kvalheim G, Karesen R, Qvist H, Janbu J, Harbitz T, Nesland JM (2004) The prognostic value of isolated tumor cells in bone marrow in breast cancer patients: evaluation of morphological categories and the number of clinically significant cells. Clin Cancer Res 10(9):3091–3097PubMedCrossRefGoogle Scholar
  25. 25.
    Becker S, Becker-Pergola G, Wallwiener D, Solomayer EF, Fehm T (2005) Detection of cytokeratin-positive cells in the bone marrow of breast cancer patients undergoing adjuvant therapy.Breast Cancer Res Treat 2005 Dec 1:1–6Google Scholar
  26. 26.
    Thurm H, Ebel S, Kentenich C, Hemsen A, Riethdorf S, Coith C, Wallwiener D, Braun S, Oberhoff C, Janicke F, Pantel K (2003) Rare expression of epithelial cell adhesion molecule on residual micrometastatic breast cancer cells after adjuvant chemotherapy. Clin Cancer Res 9(7):2598–2604PubMedGoogle Scholar
  27. 27.
    Braun S, Kentenich C, Janni W, Hepp F, de Waal J, Willgeroth F, Sommer H, Pantel K (2000) Lack of effect of adjuvant chemotherapy on the elimination of single dormant tumor cells in bone marrow of high-risk breast cancer patients. J Clin Oncol Jan 18(1):80–86Google Scholar
  28. 28.
    Slade MJ, Singh A, Smith BM, Tripuraneni G, Hall E, Peckitt C, Fox S, Graham H, Luchtenborg M, Sinnett HD, Cross NC, Coombes RC (2005) Persistence of bone marrow micrometastases in patients receiving adjuvant therapy for breast cancer: results at 4 years.Int J Cancer 2005 Mar 10, 114(1):94–100Google Scholar
  29. 29.
    Janni W, Rack B, Schindlbeck C, Strobl B, Rjosk D, Braun S, Sommer H, Pantel K, Gerber B, Friese K (2005) The persistence of isolated tumor cells in bone marrow from patients with breast carcinoma predicts an increased risk for recurrence.Cancer. 2005 Mar 1, 103(5):884–891Google Scholar
  30. 30.
    Roggel F, Hocke S, Lindemann K, Sinz S, Welk A, Bosl M, Pabst M, Nusser N, Braun S, Schmitt M, Harbeck N (2003) Minimal residual disease in breast cancer and gynecological malignancies: phenotype and clinical relevance. Recent Res Cancer Res 162:89–100Google Scholar
  31. 31.
    Pantel K, Schlimok G, Braun S, Kutter D, Lindemann F, Schaller G, Funke I, Izbicki JR, Riehtmüller G (1993) Differential expression of proliferation-associated molecules in individual micrometastatic carcinoma cells. J Natl Cancer Inst 85:1419–1424PubMedCrossRefGoogle Scholar
  32. 32.
    Schmidt-Kittler O, Ragg T, Daskalakis A, Granzow M, Ahr A, Blankenstein TJF, Kaufmann M, Diebold J, Arnholdt H, Müller P, Bischoff J, Harich D, Schlimok G, Rietmüller G, Eils R, Klein CA (2003) From latent disseminated cells to overt metastases: genetic analyis of systemic breast cancer progression. PNAS 100:7737–7742PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Sven Becker
    • 1
  • Erich Solomayer
    • 1
  • Graziella Becker-Pergola
    • 1
  • Diethelm Wallwiener
    • 1
  • Tanja Fehm
    • 1
  1. 1.Department of Gynecology and ObstetricsTübingen University HospitalTübingenGermany

Personalised recommendations