Breast Cancer Research and Treatment

, Volume 104, Issue 2, pp 121–128 | Cite as

The role of ATM in breast cancer development

  • Jana Prokopcova
  • Zdenek Kleibl
  • Claire M. Banwell
  • Petr Pohlreich
Review Paper


Complete or partial inability to sense and repair DNA damage increases the risk of developing cancer. The ataxia telangiectasia mutated (ATM) protein kinase has a crucial role in response to DNA double-strand breaks. Hereditary mutations in the ATM gene are the cause of a rare genomic instability syndrome ataxia telangiectasia (AT) characterized, among others, by elevated cancer risk. Although clear in homozygotes, numerous studies have failed to find a link between heterozygotes and cancer. However, there is increasing evidence that ATM heterozygotes have an increased risk of developing breast cancer. First, epidemiological studies conferred an increased risk of breast cancer among AT relatives. Second, in vitro studies of heterozygous cells provide strong evidence of hyperradiosensitivity. Third, some clinical studies found an increased frequency of ATM mutations among high-risk breast cancer families.


Ataxia telangiectasia ATM Breast cancer Heterozygotes 



This work was supported by the Internal Grant Agency of the Ministry of Health of the Czech Republic (Grant No. 9051-3/2006) and the Research Project of the Ministry of Education (Grant No. MSM 0021620808).


  1. 1.
    Swift M, Morrell D, Cromartie E, Chamberlin AR, Skolnick MH, Bishop DT (1986) The incidence and gene frequency of ataxia-telangiectasia in the United States. Am J Hum Genet 39:573–583PubMedGoogle Scholar
  2. 2.
    Savitsky K, Sfez S, Tagle DA, Ziv Y, Sartiel A, Collins FS, Shiloh Y, Rotman G (1995) The complete sequence of the coding region of the ATM gene reveals similarity to cell cycle regulators in different species. Hum Mol Genet 4:2025–2032PubMedCrossRefGoogle Scholar
  3. 3.
    Concannon P, Gatti RA (1997) Diversity of ATM gene mutations detected in patients with ataxia-telangiectasia. Hum Mutat 10:100–107PubMedCrossRefGoogle Scholar
  4. 4.
    Stankovic T, Kidd AM, Sutcliffe A, McGuire GM, Robinson P, Weber P, Bedenham T, Bradwell AR, Easton DF, Lennox GG, Haites N, Byrd PJ, Taylor AM (1998) ATM mutations and phenotypes in ataxia-telangiectasia families in the British Isles: expression of mutant ATM and the risk of leukemia, lymphoma, and breast cancer. Am J Hum Genet 62:334–345PubMedCrossRefGoogle Scholar
  5. 5.
    Teraoka SN, Telatar M, Becker-Catania S, Liang T, Onengut S, Tolun A, Chessa L, Sanal O, Bernatowska E, Gatti RA, Concannon P (1999) Splicing defects in the ataxia-telangiectasia gene, ATM: underlying mutations and consequences. Am J Hum Genet 64:1617–1631PubMedCrossRefGoogle Scholar
  6. 6.
    Sandoval N, Platzer M, Rosenthal A, Dork T, Bendix R, Skawran B, Stuhrmann M, Wegner RD, Sperling K, Banin S, Shiloh Y, Baumer A, Bernthaler U, Sennefelder H, Brohm M, Weber BH, Schindler D (1999) Characterization of ATM gene mutations in 66 ataxia telangiectasia families. Hum Mol Genet 8:69–79PubMedCrossRefGoogle Scholar
  7. 7.
    Gatti RA, Tward A, Concannon P (1999) Cancer risk in ATM heterozygotes: a model of phenotypic and mechanistic differences between missense and truncating mutations. Mol Genet Metab 68:419–423PubMedCrossRefGoogle Scholar
  8. 8.
    Gatti RA, Berkel I, Boder E, Braedt G, Charmley P, Concannon P, Ersoy F, Foroud T, Jaspers NG, Lange K (1988) Localization of an ataxia-telangiectasia gene to chromosome 11q22–23. Nature 336:577–580PubMedCrossRefGoogle Scholar
  9. 9.
    Uziel T, Savitsky K, Platzer M, Ziv Y, Helbitz T, Nehls M, Boehm T, Rosenthal A, Shiloh Y, Rotman G (1996) Genomic organization of the ATM gene. Genomics 33:317–320PubMedCrossRefGoogle Scholar
  10. 10.
    Shafman T, Khanna KK, Kedar P, Spring K, Kozlov S, Yen T, Hobson K, Gatei M, Zhang N, Watters D, Egerton M, Shiloh Y, Kharbanda S, Kufe D, Lavin MF (1997) Interaction between ATM protein and c-Abl in response to DNA damage. Nature 387:520–523PubMedCrossRefGoogle Scholar
  11. 11.
    Khanna KK (2000) Cancer risk and the ATM gene: a continuing debate. J Natl Cancer Inst 92:795–802PubMedCrossRefGoogle Scholar
  12. 12.
    Lakin ND, Weber P, Stankovic T, Rottinghaus ST, Taylor AM, Jackson SP (1996) Analysis of the ATM protein in wild-type and ataxia telangiectasia cells. Oncogene 13:2707–2716PubMedGoogle Scholar
  13. 13.
    Rotman G, Shiloh Y (1997) Ataxia-telangiectasia: is ATM a sensor of oxidative damage and stress? Bioessays 19:911–917PubMedCrossRefGoogle Scholar
  14. 14.
    Lim DS, Kirsch DG, Canman CE, Ahn JH, Ziv Y, Newman LS, Darnell RB, Shiloh Y, Kastan MB (1998) ATM binds to beta-adaptin in cytoplasmic vesicles. Proc Natl Acad Sci USA 95:10146–10151PubMedCrossRefGoogle Scholar
  15. 15.
    Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421:499–506PubMedCrossRefGoogle Scholar
  16. 16.
    Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ (2001) ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 276:42462–42467PubMedCrossRefGoogle Scholar
  17. 17.
    Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L, Smorodinsky NI, Prives C, Reiss Y, Shiloh Y, Ziv Y (1998) Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281:1674–1677PubMedCrossRefGoogle Scholar
  18. 18.
    Khosravi R, Maya R, Gottlieb T, Oren M, Shiloh Y, Shkedy D (1999) Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proc Natl Acad Sci USA 96:14973–14977PubMedCrossRefGoogle Scholar
  19. 19.
    Chen G, Yuan SS, Liu W, Xu Y, Trujillo K, Song B, Cong F, Goff SP, Wu Y, Arlinghaus R, Baltimore D, Gasser PJ, Park MS, Sung P, Lee EY (1999) Radiation-induced assembly of Rad51 and Rad52 recombination complex requires ATM and c-Abl. J Biol Chem 274:12748–12752PubMedCrossRefGoogle Scholar
  20. 20.
    Wang H, Guan J, Wang H, Perrault AR, Wang Y, Iliakis G (2001) Replication protein A2 phosphorylation after DNA damage by the coordinated action of ataxia telangiectasia-mutated and DNA-dependent protein kinase. Cancer Res 61:8554–8563PubMedGoogle Scholar
  21. 21.
    Foray N, Marot D, Gabriel A, Randrianarison V, Carr AM, Perricaudet M, Ashworth A, Jeggo P (2003) A subset of ATM- and ATR-dependent phosphorylation events requires the BRCA1 protein. EMBO J 22:2860–2871PubMedCrossRefGoogle Scholar
  22. 22.
    Lee JH, Paull TT (2005) ATM activation by DNA double-strand breaks through the Mre11–Rad50–Nbs1 complex. Science 308:551–554PubMedCrossRefGoogle Scholar
  23. 23.
    Lee JH, Paull TT (2004) Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science 304:93–96PubMedCrossRefGoogle Scholar
  24. 24.
    Carney JP, Maser RS, Olivares H, Davis EM, Le Beau M, Yates JR III, Hays L, Morgan WF, Petrini JH (1998) The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93:477–486PubMedCrossRefGoogle Scholar
  25. 25.
    Hopfner KP, Karcher A, Craig L, Woo TT, Carney JP, Tainer JA (2001) Structural biochemistry and interaction architecture of the DNA double-strand break repair Mre11 nuclease and Rad50-ATPase. Cell 105:473–485PubMedCrossRefGoogle Scholar
  26. 26.
    Taylor AM, Groom A, Byrd PJ (2004) Ataxia-telangiectasia-like disorder (ATLD)—its clinical presentation and molecular basis. DNA Repair (Amst) 3:1219–1225CrossRefGoogle Scholar
  27. 27.
    Cortez D, Wang Y, Qin J, Elledge SJ (1999) Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 286:1162–1166PubMedCrossRefGoogle Scholar
  28. 28.
    Li S, Ting NS, Zheng L, Chen PL, Ziv Y, Shiloh Y, Lee EY, Lee WH (2000) Functional link of BRCA1 and ataxia telangiectasia gene product in DNA damage response. Nature 406:210–215PubMedCrossRefGoogle Scholar
  29. 29.
    Taniguchi T, Garcia-Higuera I, Xu B, Andreassen PR, Gregory RC, Kim ST, Lane WS, Kastan MB, D’Andrea AD (2002) Convergence of the fanconi anemia and ataxia telangiectasia signaling pathways. Cell 109:459–472PubMedCrossRefGoogle Scholar
  30. 30.
    Bartek J, Lukas J (2003) Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3:421–429PubMedCrossRefGoogle Scholar
  31. 31.
    Falck J, Mailand N, Syljuasen RG, Bartek J, Lukas J (2001) The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410:842–847PubMedCrossRefGoogle Scholar
  32. 32.
    Gatei M, Sloper K, Sorensen C, Syljuasen R, Falck J, Hobson K, Savage K, Lukas J, Zhou BB, Bartek J, Khanna KK (2003) Ataxia-telangiectasia-mutated (ATM) and NBS1-dependent phosphorylation of Chk1 on Ser-317 in response to ionizing radiation. J Biol Chem 278:14806–14811PubMedCrossRefGoogle Scholar
  33. 33.
    Pommier Y, Sordet O, Rao VA, Zhang H, Kohn KW (2005) Targeting chk2 kinase: molecular interaction maps and therapeutic rationale. Curr Pharm Des 11:2855–2872PubMedCrossRefGoogle Scholar
  34. 34.
    Falck J, Petrini JH, Williams BR, Lukas J, Bartek J (2002) The DNA damage-dependent intra-S phase checkpoint is regulated by parallel pathways. Nat Genet 30:290–294PubMedCrossRefGoogle Scholar
  35. 35.
    Formichi P, Battisti C, Tripodi SA, Tosi P, Federico A (2000) Apoptotic response and cell cycle transition in ataxia telangiectasia cells exposed to oxidative stress. Life Sci 66:1893–1903PubMedCrossRefGoogle Scholar
  36. 36.
    Gladdy RA, Nutter LM, Kunath T, Danska JS, Guidos CJ (2006) p53-independent apoptosis disrupts early organogenesis in embryos lacking both ataxia-telangiectasia mutated and Prkdc. Mol Cancer Res 4:311–318PubMedCrossRefGoogle Scholar
  37. 37.
    Piret B, Schoonbroodt S, Piette J (1999) The ATM protein is required for sustained activation of NF-kappaB following DNA damage. Oncogene 18:2261–2271PubMedCrossRefGoogle Scholar
  38. 38.
    Karlseder J, Hoke K, Mirzoeva OK, Bakkenist C, Kastan MB, Petrini JH, de Lange T (2004) The telomeric protein TRF2 binds the ATM kinase and can inhibit the ATM-dependent DNA damage response. PLoS Biol 2:E240PubMedCrossRefGoogle Scholar
  39. 39.
    Morrell D, Cromartie E, Swift M (1986) Mortality and cancer incidence in 263 patients with ataxia-telangiectasia. J Natl Cancer Inst 77:89–92PubMedGoogle Scholar
  40. 40.
    Gumy-Pause F, Wacker P, Sappino AP (2004) ATM gene and lymphoid malignancies. Leukemia 18:238–242PubMedCrossRefGoogle Scholar
  41. 41.
    Su Y, Swift M (2000) Mortality rates among carriers of ataxia-telangiectasia mutant alleles. Ann Intern Med 133:770–778PubMedGoogle Scholar
  42. 42.
    Inskip HM, Kinlen LJ, Taylor AM, Woods CG, Arlett CF (1999) Risk of breast cancer and other cancers in heterozygotes for ataxia-telangiectasia. Br J Cancer 79:1304–1307PubMedCrossRefGoogle Scholar
  43. 43.
    Lantelme E, Turinetto V, Mantovani S, Marchi A, Regazzoni S, Porcedda P, De Marchi M, Giachino C (2003) Analysis of secondary V(D)J rearrangements in mature, peripheral T cells of ataxia-telangiectasia heterozygotes. Lab Invest 83:1467–1475PubMedCrossRefGoogle Scholar
  44. 44.
    Angele S, Hall J (2000) The ATM gene and breast cancer: is it really a risk factor? Mutat Res 462:167–178PubMedCrossRefGoogle Scholar
  45. 45.
    Nathanson KL, Wooster R, Weber BL (2001) Breast cancer genetics: what we know and what we need. Nat Med 7:552–556PubMedCrossRefGoogle Scholar
  46. 46.
    Swift M, Morrell D, Massey RB, Chase CL (1991) Incidence of cancer in 161 families affected by ataxia-telangiectasia. N Engl J Med 325:1831–1836PubMedCrossRefGoogle Scholar
  47. 47.
    Broeks A, Urbanus JH, Floore AN, Dahler EC, Klijn JG, Rutgers EJ, Devilee P, Russell NS, van Leeuwen FE, van’t Veer LJ (2000) ATM-heterozygous germline mutations contribute to breast cancer-susceptibility. Am J Hum Genet 66:494–500PubMedCrossRefGoogle Scholar
  48. 48.
    Thompson D, Duedal S, Kirner J, McGuffog L, Last J, Reiman A, Byrd P, Taylor M, Easton DF (2005) Cancer risks and mortality in heterozygous ATM mutation carriers. J Natl Cancer Inst 97:813–822PubMedCrossRefGoogle Scholar
  49. 49.
    Thorstenson YR, Roxas A, Kroiss R, Jenkins MA, Yu KM, Bachrich T, Muhr D, Wayne TL, Chu G, Davis RW, Wagner TM, Oefner PJ (2003) Contributions of ATM mutations to familial breast and ovarian cancer. Cancer Res 63:3325–3333PubMedGoogle Scholar
  50. 50.
    Renwick A, Thompson D, Seal S, Kelly P, Chagtai T, Ahmed M, North B, Jayatilake H, Barfoot R, Spanova K, McGuffog L, Evans DG, Eccles D, Easton DF, Stratton MR, Rahman N (2006) ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet 38(8):873–875PubMedCrossRefGoogle Scholar
  51. 51.
    Teraoka SN, Malone KE, Doody DR, Suter NM, Ostrander EA, Daling JR, Concannon P (2001) Increased frequency of ATM mutations in breast carcinoma patients with early onset disease and positive family history. Cancer 92:479–487PubMedCrossRefGoogle Scholar
  52. 52.
    Sommer SS, Jiang Z, Feng J, Buzin CH, Zheng J, Longmate J, Jung M, Moulds J, Dritschilo A (2003) ATM missense mutations are frequent in patients with breast cancer. Cancer Genet Cytogenet 145:115–120PubMedCrossRefGoogle Scholar
  53. 53.
    FitzGerald MG, Bean JM, Hegde SR, Unsal H, MacDonald DJ, Harkin DP, Finkelstein DM, Isselbacher KJ, Haber DA (1997) Heterozygous ATM mutations do not contribute to early onset of breast cancer. Nat Genet 15:307–310PubMedCrossRefGoogle Scholar
  54. 54.
    Ramsay J, Birrell G, Lavin M (1998) Testing for mutations of the ataxia telangiectasia gene in radiosensitive breast cancer patients. Radiother Oncol 47:125–128PubMedCrossRefGoogle Scholar
  55. 55.
    Dork T, Bendix R, Bremer M, Rades D, Klopper K, Nicke M, Skawran B, Hector A, Yamini P, Steinmann D, Weise S, Stuhrmann M, Karstens JH (2001) Spectrum of ATM gene mutations in a hospital-based series of unselected breast cancer patients. Cancer Res 61:7608–7615PubMedGoogle Scholar
  56. 56.
    Broeks A, Urbanus JH, de Knijff P, Devilee P, Nicke M, Klopper K, Dork T, Floore AN, van’t Veer LJ (2003) IVS10-6T > G, an ancient ATM germline mutation linked with breast cancer. Hum Mutat 21:521–528PubMedCrossRefGoogle Scholar
  57. 57.
    Thompson D, Antoniou AC, Jenkins M, Marsh A, Chen X, Wayne T, Tesoriero A, Milne R, Spurdle A, Thorstenson Y, Southey M, Giles GG, Khanna KK, Sambrook J, Oefner P, Goldgar D, Hopper JL, Easton D, Chenevix-Trench G (2005) Two ATM variants and breast cancer risk. Hum Mutat 25:594–595PubMedCrossRefGoogle Scholar
  58. 58.
    Szabo CI, Schutte M, Broeks A, Houwing-Duistermaat JJ, Thorstenson YR, Durocher F, Oldenburg RA, Wasielewski M, Odefrey F, Thompson D, Floore AN, Kraan J, Klijn JG, van den Ouweland AM, Wagner TM, Devilee P, Simard J, van’t Veer LJ, Goldgar DE, Meijers-Heijboer H (2004) Are ATM mutations 7271T→G and IVS10-6T→G really high-risk breast cancer-susceptibility alleles? Cancer Res 64:840–843PubMedCrossRefGoogle Scholar
  59. 59.
    Clarke RA, Fang ZH, Marr PJ, Lee CS, Kearsley JH, Papadatos G (2002) ATM induction insufficiency in a radiosensitive breast-cancer patient. Australas Radiol 46:329–335PubMedCrossRefGoogle Scholar
  60. 60.
    Weil MM, Kittrell FS, Yu Y, McCarthy M, Zabriskie RC, Ullrich RL (2001) Radiation induces genomic instability and mammary ductal dysplasia in Atm heterozygous mice. Oncogene 20:4409–4411PubMedCrossRefGoogle Scholar
  61. 61.
    Hampton GM, Mannermaa A, Winqvist R, Alavaikko M, Blanco G, Taskinen PJ, Kiviniemi H, Newsham I, Cavenee WK, Evans GA (1994) Loss of heterozygosity in sporadic human breast carcinoma: a common region between 11q22 and 11q23.3. Cancer Res 54:4586–4589PubMedGoogle Scholar
  62. 62.
    Rio PG, Pernin D, Bay JO, Albuisson E, Kwiatkowski F, De Latour M, Bernard-Gallon DJ, Bignon YJ (1998) Loss of heterozygosity of BRCA1, BRCA2 and ATM genes in sporadic invasive ductal breast carcinoma. Int J Oncol 13:849–853PubMedGoogle Scholar
  63. 63.
    Koike M, Takeuchi S, Park S, Hatta Y, Yokota J, Tsuruoka N, Koeffler HP (1999) Ovarian cancer: loss of heterozygosity frequently occurs in the ATM gene, but structural alterations do not occur in this gene. Oncology 56:160–163PubMedCrossRefGoogle Scholar
  64. 64.
    Bay JO, Uhrhammer N, Pernin D, Presneau N, Tchirkov A, Vuillaume M, Laplace V, Grancho M, Verrelle P, Hall J, Bignon YJ (1999) High incidence of cancer in a family segregating a mutation of the ATM gene: possible role of ATM heterozygosity in cancer. Hum Mutat 14:485–492PubMedCrossRefGoogle Scholar
  65. 65.
    Feng J, Yan J, Chen J, Schlake G, Jiang Z, Buzin CH, Sommer SS, Dritschilo A (2003) Absence of somatic ATM missense mutations in 58 mammary carcinomas. Cancer Genet Cytogenet 145:179–182PubMedCrossRefGoogle Scholar
  66. 66.
    Janatova M, Zikan M, Dundr P, Matous B, Pohlreich P (2005) Novel somatic mutations in the BRCA1 gene in sporadic breast tumors. Hum Mutat 25:319PubMedCrossRefGoogle Scholar
  67. 67.
    Futreal PA, Liu Q, Shattuck-Eidens D, Cochran C, Harshman K, Tavtigian S, Bennett LM, Haugen-Strano A, Swensen J, Miki Y (1994) BRCA1 mutations in primary breast and ovarian carcinomas. Science 266:120–122PubMedCrossRefGoogle Scholar
  68. 68.
    Boultwood J (2001) Ataxia telangiectasia gene mutations in leukaemia and lymphoma. J Clin Pathol 54:512–516PubMedCrossRefGoogle Scholar
  69. 69.
    Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428PubMedCrossRefGoogle Scholar
  70. 70.
    Gao G, Bracken AP, Burkard K, Pasini D, Classon M, Attwooll C, Sagara M, Imai T, Helin K, Zhao J (2003) NPAT expression is regulated by E2F and is essential for cell cycle progression. Mol Cell Biol 23:2821–2833PubMedCrossRefGoogle Scholar
  71. 71.
    Kim WJ, Vo QN, Shrivastav M, Lataxes TA, Brown KD (2002) Aberrant methylation of the ATM promoter correlates with increased radiosensitivity in a human colorectal tumor cell line. Oncogene 21:3864–3871PubMedCrossRefGoogle Scholar
  72. 72.
    Vo QN, Kim WJ, Cvitanovic L, Boudreau DA, Ginzinger DG, Brown KD (2004) The ATM gene is a target for epigenetic silencing in locally advanced breast cancer. Oncogene 23:9432–9437PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Jana Prokopcova
    • 1
  • Zdenek Kleibl
    • 1
  • Claire M. Banwell
    • 1
  • Petr Pohlreich
    • 1
  1. 1.Department of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic

Personalised recommendations