Breast Cancer Research and Treatment

, Volume 103, Issue 2, pp 197–208

Predicting response to primary chemotherapy: gene expression profiling of paraffin-embedded core biopsy tissue

  • Lida Mina
  • Sharon E. Soule
  • Sunil Badve
  • Fredrick L. Baehner
  • Joffre Baker
  • Maureen Cronin
  • Drew Watson
  • Mei-Lan Liu
  • George W. SledgeJr
  • Steve Shak
  • Kathy D. Miller
Clinical trial

Abstract

Purpose

Primary chemotherapy provides an ideal opportunity to correlate gene expression with response to treatment. We used paraffin-embedded core biopsies from a completed phase II trial to identify genes that correlate with response to primary chemotherapy.

Patients and Methods

Patients with newly diagnosed stage II or III breast cancer were treated with sequential doxorubicin 75 mg/M2 q2 wks × 3 and docetaxel 40 mg/M2 weekly × 6; treatment order was randomly assigned. Pretreatment core biopsy samples were interrogated for genes that might correlate with pathologic complete response (pCR). In addition to the individual genes, the correlation of the Oncotype DX Recurrence Score with pCR was examined.

Results

Of 70 patients enrolled in the parent trial, core biopsies samples with sufficient RNA for gene analyses were available from 45 patients; 9 (20%) had inflammatory breast cancer (IBC). Six (14%) patients achieved a pCR. Twenty-two of the 274 candidate genes assessed correlated with pCR (p < 0.05). Genes correlating with pCR could be grouped into three large clusters: angiogenesis-related genes, proliferation related genes, and invasion-related genes. Expression of estrogen receptor (ER)-related genes and Recurrence Score did not correlate with pCR. In an exploratory analysis we compared gene expression in IBC to non-inflammatory breast cancer; twenty-four (9%) of the genes were differentially expressed (p < 0.05), 5 were upregulated and 19 were downregulated in IBC.

Conclusion

Gene expression analysis on core biopsy samples is feasible and identifies candidate genes that correlate with pCR to primary chemotherapy. Gene expression in IBC differs significantly from noninflammatory breast cancer.

Keywords

Angiogenesis Proliferation Invasion Inflammatory breast cancer 

References

  1. 1.
    Makris A, Powles TJ, Ashley SE, Chang J, Hickish T, Tidy VA, Nash AG, Ford HT (1998) A reduction in the requirements for mastectomy in a randomized trial of neoadjuvant chemoendocrine therapy in primary breast cancer. Ann Oncol 9(11):1179–1184PubMedCrossRefGoogle Scholar
  2. 2.
    Mauriac L, Durand M, Avril A, Dilhuydy JM (1991) Effects of primary chemotherapy in conservative treatment of breast cancer patients with operable tumors larger than 3 cm. Results of a randomized trial in a single centre. Ann Oncol 2(5):347–354PubMedGoogle Scholar
  3. 3.
    Scholl SM, Fourquet A, Asselain B, Pierga JY, Vilcoq JR, Durand JC, Dorval T, Palangie T, Jouve M, Beuzeboc P et al (1994) Neoadjuvant versus adjuvant chemotherapy in premenopausal patients with tumours considered too large for breast conserving surgery: preliminary results of a randomised trial: S6. Eur J Cancer 30A(5):645–652PubMedCrossRefGoogle Scholar
  4. 4.
    Fisher B, Bryant J, Wolmark N, Mamounas E, Brown A, Fisher ER, Wickerham DL, Begovic M, DeCillis A, Robidoux A et al (1998) Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. J Clin Oncol 16(8):2672–2685PubMedGoogle Scholar
  5. 5.
    Cronin M, Pho M, Dutta D, Stephans JC, Shak S, Kiefer MC, Esteban JM, Baker JB (2004) Measurement of gene expression in archival paraffin-embedded tissues: development and performance of a 92-gene reverse transcriptase-polymerase chain reaction assay. Am J Pathol 164(1):35–42PubMedGoogle Scholar
  6. 6.
    Perou CM, Jeffrey SS, van de Rijn M, Rees CA, Eisen MB, Ross DT, Pergamenschikov A, Williams CF, Zhu SX, Lee JC et al (1999) Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci USA 96(16):9212–9217PubMedCrossRefGoogle Scholar
  7. 7.
    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752PubMedCrossRefGoogle Scholar
  8. 8.
    Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874PubMedCrossRefGoogle Scholar
  9. 9.
    Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100(14):8418–8423PubMedCrossRefGoogle Scholar
  10. 10.
    Chang JC, Wooten EC, Tsimelzon A, Hilsenbeck SG, Gutierrez MC, Elledge R, Mohsin S, Osborne CK, Chamness GC, Allred DC et al (2003) Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet 362(9381):362–369PubMedCrossRefGoogle Scholar
  11. 11.
    Pusztai L, Ayers M, Simmans FW et al (2003) Emerging science: prospective validation of gene expression profiling-based prediction of complete pathologic response to neoadjuvant paclitaxel/FAC chemotherapy in breast cancer. J Clin Oncol 21:237sCrossRefGoogle Scholar
  12. 12.
    Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, Baehner FL, Walker MG, Watson D, Park T et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351(27):2817–2826PubMedCrossRefGoogle Scholar
  13. 13.
    Paik S, Shak S, Tang G et al (2004) Expression of the 21 genes in the Recurrence Score assay and prediction of clinical benefit from tamoxifen in NSABP study B-20. Breast Cancer Res Treat 88(S1):S15Google Scholar
  14. 14.
    Paik S, Tang G, Shak S et al (2006) Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol 24:2019–2027PubMedCrossRefGoogle Scholar
  15. 15.
    Miller KD, Soule SE, Calley C, Emerson RE, Hutchins GD, Kopecky K, Badve S, Storniolo A, Goulet R, Sledge GW Jr (2005) Randomized phase II trial of the anti-angiogenic potential of doxorubicin and docetaxel; primary chemotherapy as Biomarker Discovery Laboratory. Breast Cancer Res Treat 89(2):187–197PubMedCrossRefGoogle Scholar
  16. 16.
    Soule SE, Shak S, Baker J et al (2003) Predicting response to chemotherapy in invasive breast cancer: gene expression profiling of paraffin-embedded core biopsy tissue. Proc Am Soc Clin Oncol 22:862Google Scholar
  17. 17.
    Sotiriou C, Powles TJ, Dowsett M, Jazaeri AA, Feldman AL, Assersohn L, Gadisetti C, Libutti SK, Liu ET (2002) Gene expression profiles derived from fine needle aspiration correlate with response to systemic chemotherapy in breast cancer. Breast Cancer Res 4(3):R3PubMedCrossRefGoogle Scholar
  18. 18.
    Ross DT, Scherf U, Eisen MB, Perou CM, Rees C, Spellman P, Iyer V, Jeffrey SS, Van de Rijn M, Waltham M et al (2000) Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet 24(3):227–235PubMedCrossRefGoogle Scholar
  19. 19.
    Gianni L, Zambetti M, Clark K, Baker J, Cronin M, Wu J, Mariani G, Rodriguez J, Carcangiu M, Watson D et al (2005) Gene expression profiles in paraffin-embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer. J Clin Oncol 23(29):7265–7277PubMedCrossRefGoogle Scholar
  20. 20.
    Remmele W, Schicketanz KH (1993) Immunohistochemical determination of estrogen and progesterone receptor content in human breast cancer. Computer-assisted image analysis (QIC score) vs. subjective grading (IRS). Pathol Res Pract 189(8):862–866PubMedGoogle Scholar
  21. 21.
    Nakamura Y, Yasuoka H, Tsujimoto M, Imabun S, Nakahara M, Nakao K, Nakamura M, Mori I, Kakudo K (2005) Lymph vessel density correlates with nodal status, VEGF-C expression, and prognosis in breast cancer. Breast Cancer Res Treat 91(2):125–132PubMedCrossRefGoogle Scholar
  22. 22.
    Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P, Riccardi L, Alitalo K, Claffey K, Detmar M (2001) Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 7(2):192–198PubMedCrossRefGoogle Scholar
  23. 23.
    Valtola R, Salven P, Heikkila P, Taipale J, Joensuu H, Rehn M, Pihlajaniemi T, Weich H, deWaal R, Alitalo K (1999) VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer. Am J Pathol 154(5):1381–1390PubMedGoogle Scholar
  24. 24.
    de Candia P, Benera R, Solit DB (2004) A role for Id proteins in mammary gland physiology and tumorigenesis. Adv Cancer Res 92:81–94PubMedGoogle Scholar
  25. 25.
    Lyden D, Young AZ, Zagzag D, Yan W, Gerald W, O’Reilly R, Bader BL, Hynes RO, Zhuang Y, Manova K et al (1999) Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 401(6754):670–677PubMedCrossRefGoogle Scholar
  26. 26.
    Schoppmann SF, Schindl M, Bayer G, Aumayr K, Dienes J, Horvat R, Rudas M, Gnant M, Jakesz R, Birner P (2003) Overexpression of Id-1 is associated with poor clinical outcome in node negative breast cancer. Int J Cancer 104(6):677–682PubMedCrossRefGoogle Scholar
  27. 27.
    Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399(6733):271–275PubMedCrossRefGoogle Scholar
  28. 28.
    Fox SB, Turner GD, Gatter KC et al (1995) The increased expression of adhesion molecules ICAM-3 E- and P-selectins on breast cancer endothelium. J Pathol 177:369–376PubMedCrossRefGoogle Scholar
  29. 29.
    Fox SB, Turner GD, Leek RD et al (1995) The prognostic value of quantitative angiogenesis in breast cancer and role of adhesion molecule expression in tumor endothelium. Breast Cancer Res Treat 36:219–226PubMedCrossRefGoogle Scholar
  30. 30.
    Cybulsky MI, Fries JW, Williams AJ, Sultan P, Eddy R, Byers M, Shows T, Gimbrone MA Jr, Collins T (1991) Gene structure, chromosomal location, and basis for alternative mRNA splicing of the human VCAM1 gene. Proc Natl Acad Sci USA 88(17):7859–7863PubMedCrossRefGoogle Scholar
  31. 31.
    Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25(4):581–611PubMedCrossRefGoogle Scholar
  32. 32.
    Kimura M, Matsukawa A, Ohkawara S, Takagi K, Yoshinaga M (1997) Blocking of TNF-alpha and IL-1 inhibits leukocyte infiltration at early, but not at late stage of S. aureus-induced arthritis and the concomitant cartilage destruction in rabbits. Clin Immunol Immunopathol 82(1):18–25PubMedCrossRefGoogle Scholar
  33. 33.
    Heidebrecht HJ, Buck F, Steinmann J, Sprenger R, Wacker HH, Parwaresch R (1997) p100: a novel proliferation-associated nuclear protein specifically restricted to cell cycle phases S, G2, and M. Blood 90(1):226–233PubMedGoogle Scholar
  34. 34.
    Zhou H, Kuang J, Zhong L, Kuo WL, Gray JW, Sahin A, Brinkley BR, Sen S (1998) Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 20(2):189–193PubMedCrossRefGoogle Scholar
  35. 35.
    Li F, Ambrosini G, Chu EY, Plescia J, Tognin S, Marchisio PC, Altieri DC (1998) Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711):580–584PubMedCrossRefGoogle Scholar
  36. 36.
    Fears CY, Grammer JR, Stewart JE Jr, Annis DS, Mosher DF, Bornstein P, Gladson CL (2005) Low-density lipoprotein receptor-related protein contributes to the antiangiogenic activity of thrombospondin-2 in a murine glioma model. Cancer Res 65(20):9338–9346PubMedCrossRefGoogle Scholar
  37. 37.
    Kounnas MZ, Henkin J, Argraves WS, Strickland DK (1993) Low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor mediates cellular uptake of pro-urokinase. J Biol Chem 268(29):21862–21867PubMedGoogle Scholar
  38. 38.
    Yang Z, Strickland DK, Bornstein P (2001) Extracellular matrix metalloproteinase 2 levels are regulated by the low density lipoprotein-related scavenger receptor and thrombospondin 2. J Biol Chem 276(11):8403–8408PubMedCrossRefGoogle Scholar
  39. 39.
    Ajisaka H, Nishimura G, Tsuneda A, Fujita H, Michiwa Y, Kawamura T, Sato T, Nojima N, Fushida S, Fujimura T et al (1998) The expression of cMET/hepatocyte growth factor receptor in colorectal cancer. Nippon Shokakibyo Gakkai Zasshi 95(7):750–754PubMedGoogle Scholar
  40. 40.
    Han B, Nakamura M, Mori I, Nakamura Y, Kakudo K (2005) Urokinase-type plasminogen activator system and breast cancer (Review). Oncol Rep 14(1):105–112PubMedGoogle Scholar
  41. 41.
    Harbeck N, Kates RE, Schmitt M (2002) Clinical relevance of invasion factors urokinase-type plasminogen activator and plasminogen activator inhibitor type 1 for individualized therapy decisions in primary breast cancer is greatest when used in combination. J Clin Oncol 20(4):1000–1007PubMedCrossRefGoogle Scholar
  42. 42.
    Duffy MJ, Maguire TM, Hill A, McDermott E, O’Higgins N (2000) Metalloproteinases: role in breast carcinogenesis, invasion and metastasis. Breast Cancer Res 2(4):252–257PubMedCrossRefGoogle Scholar
  43. 43.
    Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM (2000) Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol 18(5):1135–1149PubMedGoogle Scholar
  44. 44.
    Rudolph-Owen LA, Matrisian LM (1998) Matrix metalloproteinases in remodeling of the normal and neoplastic mammary gland. J Mammary Gland Biol Neoplasia 3(2):177–189PubMedCrossRefGoogle Scholar
  45. 45.
    Zou TT, Selaru FM, Xu Y, Shustova V, Yin J, Mori Y, Shibata D, Sato F, Wang S, Olaru A et al (2002) Application of cDNA microarrays to generate a molecular taxonomy capable of distinguishing between colon cancer and normal colon. Oncogene 21(31):4855–4862PubMedCrossRefGoogle Scholar
  46. 46.
    Tamm I, Kornblau SM, Segall H, Krajewski S, Welsh K, Kitada S, Scudiero DA, Tudor G, Qui YH, Monks A et al (2000) Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin Cancer Res 6(5):1796–1803PubMedGoogle Scholar
  47. 47.
    Kudoh M, Knee DA, Takayama S, Reed JC (2002) Bag1 proteins regulate growth and survival of ZR-75-1 human breast cancer cells. Cancer Res 62(6):1904–1909PubMedGoogle Scholar
  48. 48.
    Resetkova E, Gonzalez-Angulo AM, Sneige N, McDonnell TJ, Buzdar AU, Kau SW, Yamamura Y, Reuben JM, Hortobagyi GN, Cristofanilli M (2004) Prognostic value of P53, MDM-2, and MUC-1 for patients with inflammatory breast carcinoma. Cancer 101(5):913–917PubMedCrossRefGoogle Scholar
  49. 49.
    Sheikh MS, Shao ZM, Hussain A, Fontana JA (1993) The p53-binding protein MDM2 gene is differentially expressed in human breast carcinoma. Cancer Res 53(14):3226–3228PubMedGoogle Scholar
  50. 50.
    Rappold I, Iwabuchi K, Date T, Chen J (2001) Tumor suppressor p53 binding protein 1 (53BP1) is involved in DNA damage-signaling pathways. J Cell Biol 153(3):613–620PubMedCrossRefGoogle Scholar
  51. 51.
    Bergamaschi D, Samuels Y, O’Neil NJ, Trigiante G, Crook T, Hsieh JK, O’Connor DJ, Zhong S, Campargue I, Tomlinson ML et al (2003) iASPP oncoprotein is a key inhibitor of p53 conserved from worm to human. Nat Genet 33(2):162–167PubMedCrossRefGoogle Scholar
  52. 52.
    Ganem G, Tubiana-Hulin M, Fumoleau P, Combe M, Misset JL, Vannetzel JM, Bachelot T, De Ybarlucea LR, Lotz V, Bendahmane B et al (2003) Phase II trial combining docetaxel and doxorubicin as neoadjuvant chemotherapy in patients with operable breast cancer. Ann Oncol 14(11):1623–1628PubMedCrossRefGoogle Scholar
  53. 53.
    Jackisch C, von Minckwitz G, Eidtmann H, Costa SD, Raab G, Blohmer JU, Schutte M, Gerber B, Merkle E, Gademann G et al (2002) Dose-dense biweekly doxorubicin/docetaxel versus sequential neoadjuvant chemotherapy with doxorubicin/cyclophosphamide/docetaxel in operable breast cancer: second interim analysis. Clin Breast Cancer 3(4):276–280PubMedCrossRefGoogle Scholar
  54. 54.
    Miller KD, McCaskill-Stevens W, Sisk J, Loesch DM, Monaco F, Seshadri R, Sledge GW Jr (1999) Combination versus sequential doxorubicin and docetaxel as primary chemotherapy for breast cancer: a randomized pilot trial of the Hoosier Oncology Group. J Clin Oncol 17(10):3033–3037PubMedGoogle Scholar
  55. 55.
    von Minckwitz G, Costa SD, Raab G, Blohmer JU, Eidtmann H, Hilfrich J, Merkle E, Jackisch C, Gademann G, Tulusan AH et al (2001) Dose-dense doxorubicin, docetaxel, and granulocyte colony-stimulating factor support with or without tamoxifen as preoperative therapy in patients with operable carcinoma of the breast: a randomized, controlled, open phase IIb study. J Clin Oncol 19(15):3506–3515Google Scholar
  56. 56.
    Zujewski JA, Eng-Wong J, O’Shaughnessy J, Venzon D, Chow C, Danforth D, Kohler DR, Cusack G, Riseberg D, Cowan KH (2003) A pilot study of dose intense doxorubicin and cyclophosphamide followed by infusional paclitaxel in high-risk primary breast cancer. Breast Cancer Res Treat 81(1):41–51PubMedCrossRefGoogle Scholar
  57. 57.
    Dias S, Shmelkov SV, Lam G, Rafii S (2002) VEGF(165) promotes survival of leukemic cells by Hsp90-mediated induction of Bcl-2 expression and apoptosis inhibition. Blood 99(7):2532–2540PubMedCrossRefGoogle Scholar
  58. 58.
    Gerber HP, Dixit V, Ferrara N (1998) Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J Biol Chem 273(21):13313–13316PubMedCrossRefGoogle Scholar
  59. 59.
    Gerber HP, McMurtrey A, Kowalski J, Yan M, Keyt BA, Dixit V, Ferrara N (1998) Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3’-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 273(46):30336–30343PubMedCrossRefGoogle Scholar
  60. 60.
    Tran J, Rak J, Sheehan C, Saibil SD, LaCasse E, Korneluk RG, Kerbel RS (1999) Marked induction of the IAP family antiapoptotic proteins survivin and XIAP by VEGF in vascular endothelial cells. Biochem Biophys Res Commun 264(3):781–788PubMedCrossRefGoogle Scholar
  61. 61.
    Gupta K, Kshirsagar S, Li W, Gui L, Ramakrishnan S, Gupta P, Law PY, Hebbel RP (1999) VEGF prevents apoptosis of human microvascular endothelial cells via opposing effects on MAPK/ERK and SAPK/JNK signaling. Exp Cell Res 247(2):495–504PubMedCrossRefGoogle Scholar
  62. 62.
    Sweeney CJ, Miller KD, Sissons SE, Nozaki S, Heilman DK, Shen J, Sledge GW Jr (2001) The antiangiogenic property of docetaxel is synergistic with a recombinant humanized monoclonal antibody against vascular endothelial growth factor or 2-methoxyestradiol but antagonized by endothelial growth factors. Cancer Res 61(8):3369–3372PubMedGoogle Scholar
  63. 63.
    Ding KY, Bai X, Dai L, Dong NZ, Ruan CG (2005) Effect of recombinant VEGF-C secreted from eukaryotic cells on proliferation and chemotherapy-induced apoptosis of leukemic cells. Ai Zheng 24(9):1037–1042PubMedGoogle Scholar
  64. 64.
    Bergom C, Gao C, Newman PJ (2005) Mechanisms of PECAM-1-mediated cytoprotection and implications for cancer cell survival. Leuk Lymphoma 46(10):1409–1421PubMedCrossRefGoogle Scholar
  65. 65.
    Perreard L, Fan C, Quackenbush JF, Mullins M, Gauthier NP, Nelson E, Mone M, Hansen H, Buys SS, Rasmussen K et al (2006) Classification and risk stratification of invasive breast carcinomas using a real-time quantitative RT-PCR assay. Breast Cancer Res 8(2):R23PubMedCrossRefGoogle Scholar
  66. 66.
    Dai H, van’t Veer L, Lamb J, He YD, Mao M, Fine BM, Bernards R, van de Vijver M, Deutsch P, Sachs A et al (2005) A cell proliferation signature is a marker of extremely poor outcome in a subpopulation of breast cancer patients. Cancer Res 65(10):4059–4066PubMedCrossRefGoogle Scholar
  67. 67.
    Sotiriou C, Wirapati P, Loi S et al (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98:262–272PubMedCrossRefGoogle Scholar
  68. 68.
    Vincent-Salomon A, Rousseau A, Jouve M, Beuzeboc P, Sigal-Zafrani B, Freneaux P, Rosty C, Nos C, Campana F, Klijanienko J et al (2004) Proliferation markers predictive of the pathological response and disease outcome of patients with breast carcinomas treated by anthracycline-based preoperative chemotherapy. Eur J Cancer 40(10):1502–1508PubMedCrossRefGoogle Scholar
  69. 69.
    Colleoni M, Orvieto E, Nole F, Orlando L, Minchella I, Viale G, Peruzzotti G, Robertson C, Noberasco C, Galimberti V et al (1999) Prediction of response to primary chemotherapy for operable breast cancer. Eur J Cancer 35(4):574–579PubMedCrossRefGoogle Scholar
  70. 70.
    Arpino G, Ciocca DR, Weiss H, Allred DC, Daguerre P, Vargas-Roig L, Leuzzi M, Gago F, Elledge R, Mohsin SK (2005) Predictive value of apoptosis, proliferation, HER-2, and topoisomerase IIalpha for anthracycline chemotherapy in locally advanced breast cancer. Breast Cancer Res Treat 92(1):69–75PubMedCrossRefGoogle Scholar
  71. 71.
    MacGrogan G, Rudolph P, Mascarel Id I, Mauriac L, Durand M, Avril A, Dilhuydy JM, Robert J, Mathoulin-Pelissier S, Picot V et al (2003) DNA topoisomerase IIalpha expression and the response toprimary chemotherapy in breast cancer. Br J Cancer 89(4):666–671PubMedCrossRefGoogle Scholar
  72. 72.
    Cardoso F, Durbecq V, Larsimont D, Paesmans M, Leroy JY, Rouas G, Sotiriou C, Renard N, Richard V, Piccart MJ et al (2004) Correlation between complete response to anthracycline-based chemotherapy and topoisomerase II-alpha gene amplification and protein overexpression in locally advanced/metastatic breast cancer. Int J Oncol 24(1):201–209PubMedGoogle Scholar
  73. 73.
    Petit T, Wilt M, Velten M, Millon R, Rodier JF, Borel C, Mors R, Haegele P, Eber M, Ghnassia JP (2004) Comparative value of tumour grade, hormonal receptors, Ki-67, HER-2 and topoisomerase II alpha status as predictive markers in breast cancer patients treated with neoadjuvant anthracycline-based chemotherapy. Eur J Cancer 40(2):205–211PubMedCrossRefGoogle Scholar
  74. 74.
    Coon JS, Marcus E, Gupta-Burt S, Seelig S, Jacobson K, Chen S, Renta V, Fronda G, Preisler HD (2002) Amplification and overexpression of topoisomerase IIalpha predict response to anthracycline-based therapy in locally advanced breast cancer. Clin Cancer Res 8(4):1061–1067PubMedGoogle Scholar
  75. 75.
    Ayers M, Symmans WF, Stec J et al (2004) Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in breast cancer. J Clin Oncol 22:2284–2293PubMedCrossRefGoogle Scholar
  76. 76.
    Bertucci F, Finetti P, Rougemont J, Charafe-Jauffret E, Nasser V, Loriod B, Camerlo J, Tagett R, Tarpin C, Houvenaeghel G et al (2004) Gene expression profiling for molecular characterization of inflammatory breast cancer and prediction of response to chemotherapy. Cancer Res 64(23):8558–8565PubMedCrossRefGoogle Scholar
  77. 77.
    Van der Auwera I, Van Laere SJ, Van den Eynden GG, Benoy I, van Dam P, Colpaert CG, Fox SB, Turley H, Harris AL, Van Marck EA et al (2004) Increased angiogenesis and lymphangiogenesis in inflammatory versus noninflammatory breast cancer by real-time reverse transcriptase-PCR gene expression quantification. Clin Cancer Res 10(23):7965–7971PubMedCrossRefGoogle Scholar
  78. 78.
    Bieche I, Lerebours F, Tozlu S, Espie M, Marty M, Lidereau R (2004) Molecular profiling of inflammatory breast cancer: identification of a poor-prognosis gene expression signature. Clin Cancer Res 10(20):6789–6795PubMedCrossRefGoogle Scholar
  79. 79.
    Stec J, Wang J, Coombes K, Ayers M, Hoersch S, Gold DL, Ross JS, Hess KR, Tirrell S, Linette G et al (2005) Comparison of the predictive accuracy of DNA array-based multigene classifiers across cDNA arrays and Affymetrix GeneChips. J Mol Diagn 7(3):357–367PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Lida Mina
    • 1
  • Sharon E. Soule
    • 2
  • Sunil Badve
    • 3
  • Fredrick L. Baehner
    • 4
  • Joffre Baker
    • 4
  • Maureen Cronin
    • 4
  • Drew Watson
    • 4
  • Mei-Lan Liu
    • 4
  • George W. SledgeJr
    • 2
  • Steve Shak
    • 4
  • Kathy D. Miller
    • 2
  1. 1.Department of MedicineIndiana UniversityIndianapolisUSA
  2. 2.Division of Hematology and OncologyIndiana UniversityIndianapolisUSA
  3. 3.Department of Anatomic PathologyIndiana UniversityIndianapolisUSA
  4. 4.Genomic Health Inc.Redwood CityUSA

Personalised recommendations