Breast Cancer Research and Treatment

, Volume 103, Issue 1, pp 61–69 | Cite as

Promoter polymorphisms in matrix metalloproteinases and their inhibitors: few associations with breast cancer susceptibility and progression

  • Haixin Lei
  • Kari Hemminki
  • Andrea Altieri
  • Robert Johansson
  • Kerstin Enquist
  • Göran Hallmans
  • Per Lenner
  • Asta Försti


The importance of matrix metalloproteinases and their inhibitors in tumor progression is well documented. We wanted to investigate if single nucleotide polymorphisms (SNPs) in the promoter regions of these genes are associated with susceptibility to or progression of breast cancer. In this, so far largest case–control study, we genotyped eight SNPs in the MMP1, MMP2, MMP3, MMP9, MMP13, RECK and TIMP3 genes in a well-characterized breast cancer series of 959 cases and 952 controls from Sweden. Even though we did not correct for multiple comparisons, only a few associations were noted. We observed a moderately increased risk for the TT homozygotes of the MMP9−1562 C/T SNP (OR 1.88, 95% CI 0.97–3.63) and for the C allele carriers of the TIMP3−1296 T/C SNP (OR 1.25, 95% CI 1.05–1.50). In the survival analysis, only the TC heterozygotes of the RECK−420 T/C SNP showed a better survival compared to the TT homozygotes (P = 0.02 in all cases and P = 0.03 in lymph node negative cases). None of the other SNPs conferred an increased breast cancer risk, nor did they correlate with survival. A combination of the −585 TT homozygosity in the RECK gene and the −1296 TT homozygosity in the TIMP3 gene correlated with estrogen and progesterone receptor status (OR 1.81, 95% CI 1.03–3.21 and OR 2.10, 95% CI 1.18–3.86, respectively), and a combination of the −1306 TT homozygosity in the MMP2 gene and the −1562 CC homozygosity in the MMP9 gene with progesterone receptor status (OR 2.34, 95% CI 1.08–5.08). Although our study suggests some correlations between the studied SNPs and the progression of breast cancer, the rarity of the risk genotypes limits their usefulness in the clinic.


Breast cancer susceptibility Cancer prognosis Case–control study Polymorphism MMP RECK TIMP 



We thank Åsa Ågren (Department of Public Health and Clinical Medicine/Nutritional Research, UmeÅ University, Sweden) for her efficiency and skill in keeping track of samples and data. We also thank Dagmar Beiße for the technical assistance. The Northern Sweden Breast Cancer Group is appreciated for providing the clinical data. The project was partially funded by Wallenberg Consortium North, Sweden and by a grant from EU (LSHC-CT−2004–503465 to KH).

Supplementary material

10549_2006_9345_MOESM1_ESM.doc (114 kb)
Supplementary material


  1. 1.
    Kim JB, Stein R, O’Hare MJ (2005) Tumour–stromal interactions in breast cancer: the role of stroma in tumourigenesis. Tumour Biol 26:173–185PubMedCrossRefGoogle Scholar
  2. 2.
    Crawford HC, Matrisian LM (1994) Tumor and stromal expression of matrix metalloproteinases and their role in tumor progression. Invasion Metastasis 14:234–245PubMedGoogle Scholar
  3. 3.
    Lambert E, Dasse E, Haye B, Petitfrere E (2004) TIMPs as multifacial proteins. Crit Rev Oncol Hematol 49:187–198PubMedGoogle Scholar
  4. 4.
    Noda M, Oh J, Takahashi R, Kondo S, Kitayama H, Takahashi C (2003) RECK: a novel suppressor of malignancy linking oncogenic signaling to extracellular matrix remodeling. Cancer Metastasis Rev 22:167–175PubMedCrossRefGoogle Scholar
  5. 5.
    Rhee JS, Coussens LM (2002) RECKing MMP function: implications for cancer development. Trends Cell Biol 12:209–211PubMedCrossRefGoogle Scholar
  6. 6.
    Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174PubMedCrossRefGoogle Scholar
  7. 7.
    Span PN, Sweep CG, Manders P, Beex LV, Leppert D, Lindberg RL (2003) Matrix metalloproteinase inhibitor reversion-inducing cysteine-rich protein with Kazal motifs: a prognostic marker for good clinical outcome in human breast carcinoma. Cancer 97:2710–2715PubMedCrossRefGoogle Scholar
  8. 8.
    Biondi ML, Turri O, Leviti S, Seminati R, Cecchini F, Bernini M, Ghilardi G, Guagnellini E (2000) (2000) MMP1 and MMP3 polymorphisms in promoter regions and cancer. Clin Chem 46:2023–2024PubMedGoogle Scholar
  9. 9.
    Ghilardi G, Biondi ML, Caputo M, Leviti S, DeMonti M, Guagnellini E, Scorza R (2002) A single nucleotide polymorphism in the matrix metalloproteinase-3 promoter enhances breast cancer susceptibility. Clin Cancer Res 8:3820–3823PubMedGoogle Scholar
  10. 10.
    Grieu F, Li WQ, Iacopetta B (2004) Genetic polymorphisms in the MMP-2 and MMP-9 genes and breast cancer phenotype. Breast Cancer Res Treat 88:197–204PubMedCrossRefGoogle Scholar
  11. 11.
    Krippl P, Langsenlehner U, Renner W, Yazdani-Biuki B, Koppel H, Leithner A, Wascher TC, Paulweber B, Samonigg H (2004) The 5A/6A polymorphism of the matrix metalloproteinase 3 gene promoter and breast cancer. Clin Cancer Res 10:3518–3520PubMedCrossRefGoogle Scholar
  12. 12.
    Przybylowska K, Zielinska J, Zadrozny M, Krawczyk T, Kulig A, Wozniak P, Rykala J, Kolacinska A, Morawiec Z, Drzewoski J, Blasiak J (2004) An association between the matrix metalloproteinase 1 promoter gene polymorphism and lymphnode metastasis in breast cancer. J Exp Clin Cancer Res 23:121–125PubMedGoogle Scholar
  13. 13.
    Przybylowska K, Kluczna A, Zadrozny M, Krawczyk T, Kulig A, Rykala J, Kolacinska A, Morawiec Z, Drzewoski J, Blasiak J (2006) Polymorphisms of the promoter regions of matrix metalloproteinases genes MMP-1 and MMP-9 in breast cancer. Breast Cancer Res Treat 95:65–72PubMedCrossRefGoogle Scholar
  14. 14.
    Kaaks R, Lundin E, Rinaldi S, Manjer J, Biessy C, Soderberg S, Lenner P, Janzon L, Riboli E, Berglund G, Hallmans G (2002) Prospective study of IGF-I, IGF-binding proteins, and breast cancer risk, in northern and southern Sweden. Cancer Causes Control 13:307–316PubMedCrossRefGoogle Scholar
  15. 15.
    Price SJ, Greaves DR, Watkins H (2001) Identification of novel, functional genetic variants in the human matrix metalloproteinase-2 gene: role of Sp1 in allele-specific transcriptional regulation. J Biol Chem 276:7549–7558PubMedCrossRefGoogle Scholar
  16. 16.
    Rutter JL, Mitchell TI, Buttice G, Meyers J, Gusella JF, Ozelius LJ, Brinckerhoff CE (1998) A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter creates an Ets binding site and augments transcription. Cancer Res 58:5321–5325PubMedGoogle Scholar
  17. 17.
    Sun Y, Cheung JM, Martel-Pelletier J, Pelletier JP, Wenger L, Altman RD, Howell DS, Cheung HS (2000) Wild type and mutant p53 differentially regulate the gene expression of human collagenase-3 (hMMP-13). J Biol Chem 275:11327–11332PubMedCrossRefGoogle Scholar
  18. 18.
    Ye S, Eriksson P, Hamsten A, Kurkinen M, Humphries SE, Henney AM (1996) Progression of coronary atherosclerosis is associated with a common genetic variant of the human stromelysin-1 promoter which results in reduced gene expression. J Biol Chem 271:13055–13060PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang B, Ye S, Herrmann SM, Eriksson P, de Maat M, Evans A, Arveiler D, Luc G, Cambien F, Hamsten A, Watkins H, Henney AM (1999) Functional polymorphism in the regulatory region of gelatinase B gene in relation to severity of coronary atherosclerosis. Circulation 99:1788–1794PubMedGoogle Scholar
  20. 20.
    Lei H, Zaloudik J, Vorechovsky I (2002) Lack of association of the −1171 (5A) allele of the MMP3 promoter with breast cancer. Clin Chem 48:798–799PubMedGoogle Scholar
  21. 21.
    Zhou Y, Yu C, Miao X, Tan W, Liang G, Xiong P, Sun T, Lin D (2004) Substantial reduction in risk of breast cancer associated with genetic polymorphisms in the promoters of the matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 genes. Carcinogenesis 25:399–404PubMedCrossRefGoogle Scholar
  22. 22.
    Hosking L, Lumsden S, Lewis K, Yeo A, McCarthy L, Bansal A, Riley J, Purvis I, Xu CF (2004) Detection of genotyping errors by Hardy-Weinberg equilibrium testing. Eur J Hum Genet 12:395–399PubMedCrossRefGoogle Scholar
  23. 23.
    Leal SM (2005) Detection of genotyping errors and pseudo-SNPs via deviations from Hardy-Weinberg equilibrium. Genet Epidemiol 29:204–214PubMedCrossRefGoogle Scholar
  24. 24.
    Wigginton JE, Cutler DJ, Abecasis GR (2005) A note on exact tests of Hardy-Weinberg equilibrium. Am J Hum Genet 76:887–893PubMedCrossRefGoogle Scholar
  25. 25.
    Jin Q, Hemminki K, Enquist K, Lenner P, Grzybowska E, Klaes R, Henriksson R, Chen B, Pamula J, Pekala W, Zientek H, Rogozinska-Szczepka J, Utracka-Hutka B, Hallmans G, Forsti A (2005) Vascular endothelial growth factor polymorphisms in relation to breast cancer development and prognosis. Clin Cancer Res 11:3647–3653PubMedCrossRefGoogle Scholar
  26. 26.
    Försti A, Jin Q, Altieri A, Johansson R, Wagner K, Enquist K, Grzybowska E, Pamula J, Pekala W, Hallmans G, Lenner P, Hemminki K (2006) Polymorphisms in the KDR and POSTN genes: association with breast cancer susceptibility and prognosis. Breast Cancer Res Treat (in press)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Haixin Lei
    • 1
  • Kari Hemminki
    • 1
    • 2
  • Andrea Altieri
    • 1
  • Robert Johansson
    • 3
  • Kerstin Enquist
    • 4
  • Göran Hallmans
    • 4
  • Per Lenner
    • 3
  • Asta Försti
    • 1
    • 2
  1. 1.Division of Molecular Genetic EpidemiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
  2. 2.Center for Family MedicineKarolinska InstituteHuddingeSweden
  3. 3.Department of OncologyNorrlands University HospitalUmeåSweden
  4. 4.Department of Public Health and Clinical Medicine/Nutritional ResearchUmeå UniversityUmeåSweden

Personalised recommendations