Prospective study of electrical impedance scanning for identifying young women at risk for breast cancer

  • Alexander Stojadinovic
  • Orah Moskovitz
  • Zahava Gallimidi
  • Scott Fields
  • Ari D. Brooks
  • Rachel Brem
  • Robert N. Mucciola
  • Mukul Singh
  • Mary Maniscalco-Theberge
  • Howard E. Rockette
  • David Gur
  • Craig D. Shriver
Clinical trial

Summary

Background

One way to improve the cost-benefit ratio for breast cancer screening in younger women is to identify those at high-risk of breast cancer and manage them in an optimal manner. The purpose of this study is to evaluate the sensitivity and specificity of Electrical Impedance Scanning (EIS) for identifying young women who are at risk for having breast cancer and should be followed with directed imaging technologies.

Methods

A prospective, observational, two-arm, multi-site clinical trial was performed on women aged 30–45 years. The ‘Sensitivity Arm’ included Clinical Breast Examinations (CBE) and EIS (T-Scan™ 2000ED) on 189 women prior to scheduled breast biopsy. The ‘Specificity Arm’ included 1361 asymptomatic women visiting clinics for routine annual well-woman examination. Sensitivity and specificity were determined. Relative probability for a woman with a positive EIS examination was computed and compared with other approaches commonly used to define ‘high-risk’ in this population.

Results

Fifty of 189 women in the Sensitivity arm had verified cancers, 19 of whom had positive EIS examination resulting in sensitivity of 38% (19/50). Of the 1361 women in the Specificity arm, 67 had positive EIS examination resulting in a specificity of 95% (1294/1361). The relative probability of a woman with a positive EIS examination was 7.68, which compares favorably with other established risk identifiers (e.g. two first-degree relatives with breast cancer or atypical ductal hyperplasia).

Conclusion

EIS may have an important role as a screening tool for identifying young women that should be followed more closely with advanced imaging technologies for early detection of breast cancer.

Keywords

electrical impedance screening breast cancer 

References

  1. 1.
    Committee on New Approaches to Early Detection and Diagnosis of Breast Cancer, Saving Women’s Lives (2004) Strategies for Improving Breast Cancer Detection and Diagnosis In: Joy JE, Penhoet EE, Petitti DB, (eds). Institute of Medicine and National Research Council of the National Academies National Academy Press Washington DCGoogle Scholar
  2. 2.
    Shannon C, Smith IE, Breast cancer in adolescents and young womenEur J Cancer 2003; 39(18):2632–2642PubMedCrossRefGoogle Scholar
  3. 3.
    Sundquist M, Thorstenson S, Brudin L, Wingren S, Nordenskjold B, Incidence and prognosis in early onset breast cancer Breast 2002; 11(1):30–35PubMedCrossRefGoogle Scholar
  4. 4.
    American Cancer Society. Cancer Facts & Figures 2004. [monograph online] 2004: Available from URL: http:// www.cancer.org/statistics/index.html? Language=English [Accessed on August 31, 2004]Google Scholar
  5. 5.
    Smith RA, Saslow D, Sawyer KA, et al.American Cancer Society guidelines for breast cancer screening: update 2003CA Cancer J Clin 2003; 53(3):141–169PubMedCrossRefGoogle Scholar
  6. 6.
    Kuhl CK, High-risk screening: multi-modality surveillance of women at high risk for breast cancer (proven or suspected carriers of a breast cancer susceptibility gene)J Exp Clin Cancer Res2002; 21(3 Suppl):S103–S106Google Scholar
  7. 7.
    Carney PA, Miglioretti DL, Yankaskas BC, et al. Individual and combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammographyAnn Intern Med2003; 138(3):168–175PubMedGoogle Scholar
  8. 8.
    Leconte I, Feger C, Galant C, et al.Mammography and subsequent whole-breast sonography of nonpalpable breast cancers: the importance of radiologic breast density AJR Am J Roentgenol2003; 180(6):1675–1679PubMedGoogle Scholar
  9. 9.
    Kroenke CH, Rosner B, Chen WY, Kawachi I, Colditz GA, Holmes MD, Functional impact of breast cancer by age at diagnosisJ Clin Oncol2004; 22(10):1849–1856PubMedCrossRefGoogle Scholar
  10. 10.
    Warner E, Plewes DB, Shumak RS, et al. Comparison of breast magnetic resonance imaging, mammography, and ultrasound for surveillance of women at high risk for hereditary breast cancerJ Clin Oncol2001; 19(15):3524–3531PubMedGoogle Scholar
  11. 11.
    Kriege M, Brekelmans CT, Boetes C, et al. Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition N Engl J Med2004; 351(5):427–437PubMedCrossRefGoogle Scholar
  12. 12.
    Fricke H, Morse S, The electric capacity of tumors of the breast J Cancer Res16:310–376. 1926Google Scholar
  13. 13.
    Singh B, Smith CW, Hughes R, In vivo dielectric spectrometerMed Biol Eng Comput1979; 17:45–60PubMedCrossRefGoogle Scholar
  14. 14.
    Surowiec AJ, Stuchly SS, Barr JR, Swarup A, Dielectric properties of breast carcinoma and the surrounding tissues IEEE Trans Biomed Eng1988; 35(4):257–263PubMedCrossRefGoogle Scholar
  15. 15.
    Piperno G, Frei EH, Moshitzky M, Breast cancer screening by impedance measurements Front Med Biol Eng1990; 2(2):111–117PubMedGoogle Scholar
  16. 16.
    Morimoto T, Kinouchi Y, Iritani T, Kimura S, et al. Measurement of the electrical bio-impedance of breast tumorsEur Surg Res1990; 22:86–92PubMedCrossRefGoogle Scholar
  17. 17.
    Jossinet J, Variability of impedivity in normal and pathological breast tissue Med Biol Eng Comput1996; 34:346–350PubMedCrossRefGoogle Scholar
  18. 18.
    Joissinet J, The impedivity of freshly excised human breast tissuePhysiol Meas 1998; 19:61–75CrossRefGoogle Scholar
  19. 19.
    Cuzick J, Holland R, Barth V, Davies R, Faupel M, Fentiman I, Frischbier HJ, LaMarque JL, Merson M, Sacchini V, Vanel D, Veronesi U, Electropotential measurements as a new diagnostic modality for breast cancerLancet1998 352(9125):359–363PubMedCrossRefGoogle Scholar
  20. 20.
    Chauveau N, Hamzaoui L, Rochaix P, Rigaud B, Voigt JJ, Morucci JP, Ex vivo discrimination between normal and pathological tissues in human breast surgical biopsies using bioimpedance spectroscopyAnn NY Acad Sci1999; 873:42–50PubMedCrossRefGoogle Scholar
  21. 21.
    Melloul M, Paz A, Ohana G, Double-phase 99 m Tc-sestamibi scintimammography and Trans-scan in diagnosing breast cancerJ Nucl Med1999; 40(3):376–380PubMedGoogle Scholar
  22. 22.
    Scholz B, Anderson R, On electrical impedance scanning – principles and simulationsElectromedica2000; 68:35–44Google Scholar
  23. 23.
    Perlet C, Kessler M, Lenington S, Sittek H, Reiser M, Electrical impedance measurements of the breast: effect of hormonal changes associated with the menstrual cycle Eur Radiol2000; 10:1550–1554PubMedCrossRefGoogle Scholar
  24. 24.
    Malich A, Fritsch T, Anderson R, et al.Electrical impedance scanning for classifying suspicious breast lesions: first results Eur Radiol2000; 10(10):1555–1561PubMedCrossRefGoogle Scholar
  25. 25.
    Malich A, Boehm T, Facius M, Differentiation of mammographically suspicious lesions: evaluation of breast ultrasound, MRI mammography and electrical impedance scanning as adjunctive technologies in breast cancer detection Clin Radiol2001; 56:278–283PubMedCrossRefGoogle Scholar
  26. 26.
    Malich A, Fritsch T, Mauch C, Boehm T, Freesmeyer M, Fleck M, Anderson R, Kaiser WA, Electrical impedance scanning: a new technique in the diagnosis of lymph nodes in which malignancy is suspected on ultrasoundBr J Radiol2001; 74(877):42–47PubMedGoogle Scholar
  27. 27.
    Glickman YA, Filo O, Nachaliel U, Lenington S, Amin-Spector S, Ginor R, Novel EIS postprocessing algorithm for breast cancer diagnosisIEEE Trans Med Imaging2002; 21:710–712PubMedCrossRefGoogle Scholar
  28. 28.
    Malich A, Boehm T, Facius M, Mentzel HJ, Fleck M, Boettcher J, Anderson R, Kaiser WA, Use of electrical impedance scanning in the differentiation of sonographically suspicious and highly suspicious lymph nodes of the head-neck region Eur Radiol2002;12(5):1114–1120PubMedCrossRefGoogle Scholar
  29. 29.
    Kerner TE, Paulsen KD, Hartov A, Soho SK, Poplack SP, Electrical impedance spectroscopy of the breast: clinical imaging results in 26 subjects IEEE Trans Med Imag2002; 21:638–645CrossRefGoogle Scholar
  30. 30.
    Martin G, Martin R, Brieva MJ, Santamaria L, Electrical impedance scanning in breast cancer imaging: correlation with mammographic and histologic diagnosis Eur Radiol2002; 12:1471–1478PubMedCrossRefGoogle Scholar
  31. 31.
    Facius M, Malich A, Schneider G, Boehm T, Anderson R, Kaiser WA, Electrical impedance scanning used in addition to ultrasound for the verification of submandibular and parotid lesions: initial resultsInvest Radiol2002 37(8):421–427PubMedCrossRefGoogle Scholar
  32. 32.
    Mentzel HJ, Malich A, Kentouche K, Freesmeyer M, Bottcher J, Schneider G, Gruhn B, Vogt S, Zintl F, Anderson R, Kaiser WA, Electrical impedance scanning-application of this new technique for lymph node evaluation in children Pediatr Radiol2003; 33(7):461–466PubMedCrossRefGoogle Scholar
  33. 33.
    Zou Y, Guo Z, A review of electrical impedance techniques for breast cancer detectionMed Eng Physics2003; 25:79–90CrossRefGoogle Scholar
  34. 34.
    Glickman YA, Filo O, David M, Yayon A, Topaz M, Zamir B, Ginzburg A, Rozenman D, Kenan G, Electrical impedance scanning: a new approach to skin cancer diagnosis Skin Res Technol2003 9(3):262–268PubMedCrossRefGoogle Scholar
  35. 35.
    Aberg P, Nicander I, Hansson J, Geladi P, Holmgren U, Ollmar S, Skin cancer identification using multifrequency electrical impedance – a potential screening tool IEEE Trans Biomed Eng2004 51(12):2097–2102PubMedCrossRefGoogle Scholar
  36. 36.
    Stojadinovic A, Fields SI, Shriver CD, Lenington S, Ginor R, Peoples GE, Burch HB, Peretz T, Freund HR, Nissan A, Electrical impedance scanning of thyroid nodules prior to thyroid surgery: a prospective studyAnn Surg Oncol2005; 12(2):152–160PubMedCrossRefGoogle Scholar
  37. 37.
    Fuchsjaeger MH, Flory D, Reiner CS, Rudas M, Riedl CC, Helbich TH, The negative predictive value of electrical impedance scanning in BI-RADS category IV breast lesions Invest Radiol 2005; 40(7):478–485PubMedCrossRefGoogle Scholar
  38. 38.
    Diebold T, Jacobi V, Scholz B, Hensel C, Solbach C, Kaufmann M, Viana F, Balzer J, Peters J, Vogl T, Value of electrical impedance scanning (EIS) in the evaluation of BI-RADS III/IV/V-lesionsTechnol Cancer Res Treat2005; 4(1):93–97PubMedGoogle Scholar
  39. 39.
    Har-Shai Y, Glickman YA, Siller G, McLeod R, Topaz M, Howe C, Ginzburg A, Zamir B, Filo O, Kenan G, Ullmann Y, Electrical impedance scanning for melanoma diagnosis: a validation studyPlast Reconstr Surg2005; 116(3):782–790PubMedCrossRefGoogle Scholar
  40. 40.
    Stojadinovic A, Nissan A, Gallimidi Z, et al.Electrical impedance scanning for the early detection of breast cancer in young women: preliminary results of a multi-center prospective clinical trialJ Clin Oncol2005; 23(12):2703–2715PubMedCrossRefGoogle Scholar
  41. 41.
    U.S. Food and Drug Administration (FDA). TransScan T-Scan 2000 – P970033. Summary of Safety and Effectiveness. [monograph online] April 16, 1999; Available from URL: http://www.fda.gov/cdrh/pdf/p970033.html [Accessed on September 1, 2004]Google Scholar
  42. 42.
    Davies RJ, Quinn DA, Davisson TH, Impedance spectroscopy characterizes the electrical signature of benign and malignant breast epitheliumBreast Cancer Res Treat2004; 88:S221Google Scholar
  43. 43.
    Davies RJ, Quinn DA, Davisson TH, Alterations in ionic transport and conductance during malignancy in breast epitheliumBreast Cancer Res Treat2004; 88:S222Google Scholar
  44. 44.
    Wersebe A, Siegmann K, Krainick U, et al.Diagnostic potential of targeted electrical impedance scanning in classifying suspicious breast lesionsInvest Radiol 2002;37(2):65–72PubMedCrossRefGoogle Scholar
  45. 45.
    Collaborative Group on Hormonal Factors in Breast Cancer, (2001) Familial breast cancer: collaborative reanalysis of individual data from 52 epidemiological studies including 58,209 women with breast cancer and 101,986 women without the disease Lancet358:1389–1399CrossRefGoogle Scholar
  46. 46.
    Krieger N, Hiatt RA, Risk of breast cancer after benign breast diseaseAm J Epidemiol1992; 136:619–631Google Scholar
  47. 47.
    London SJ, Connolly JL, Schnitt SJ, Colditz GA, A prospective study of benign breast disease and the risk of breast cancerJAMA1992; 267:941–944PubMedCrossRefGoogle Scholar
  48. 48.
    Bodian CA, Perzin KH, Lattes R, Hoffman P, Abernathy TG, Prognostic significance of benign breast diseaseCancer1993; 71:3798–3807CrossRefGoogle Scholar
  49. 49.
    Piperno G, Lenington S, Breast electrical impedance and estrogen use in postmenopausal womenMaturitas2002; 41:17–22PubMedCrossRefGoogle Scholar
  50. 50.
    MacKarem G, The effectiveness of the Gail model in estimating risk for development of breast cancer in women under 40 years of ageBreast J2001; 7(1):34–39PubMedCrossRefGoogle Scholar
  51. 51.
    Tilanus-Linthorst MM, Obdeijn IM, Bartels KC, de Koning HJ, Oudkerk M, First experiences in screening women at high risk for breast cancer with MR imaging Breast Cancer Res Treat2000; 63(1):53–60PubMedCrossRefGoogle Scholar
  52. 52.
    Kuhl CK, Schmutzler RK, Leutner CC, et al.Breast MR imaging screening in 192 women proved or suspected to be carriers of a breast cancer susceptibility gene: preliminary resultsRadiology2000; 215:267–279PubMedGoogle Scholar
  53. 53.
    Stoutjesdijk MJ, Boetes C, Jager GJ, et al.Magnetic resonance imaging and mammography in women with a hereditary risk of breast cancerJ Natl Cancer Inst 2001; 93(14):1095–1102PubMedCrossRefGoogle Scholar
  54. 54.
    Hou MF, Chuang HY, Ou-Yang F, et al.Comparison of breast mammography, sonography and physical examination for screening women at high risk of breast cancer in TaiwanUltrasound Med Biol2002:28(4):415–420PubMedCrossRefGoogle Scholar
  55. 55.
    Jossinet J, Schmitt M, A review of parameters for the bioelectrical characterization of breast tissueAnn NY Acad Sci1999; 873:30–41PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Alexander Stojadinovic
    • 1
    • 10
  • Orah Moskovitz
    • 2
  • Zahava Gallimidi
    • 3
  • Scott Fields
    • 4
  • Ari D. Brooks
    • 5
  • Rachel Brem
    • 6
  • Robert N. Mucciola
    • 7
  • Mukul Singh
    • 8
  • Mary Maniscalco-Theberge
    • 1
  • Howard E. Rockette
    • 9
  • David Gur
    • 9
  • Craig D. Shriver
    • 1
  1. 1.Walter Reed Army Medical CenterWashington, DCUSA
  2. 2.Machon Or, Bnei Zion HospitalHaifaIsrael
  3. 3.Rambam HospitalHaifaIsrael
  4. 4.Hadassah University HospitalMount Scopus, JerusalemIsrael
  5. 5.Drexel University College of MedicinePhiladelphiaUSA
  6. 6.George Washington UniversityWashington, DCUSA
  7. 7.East Hills Ob/Gyn ClinicJohnstownUSA
  8. 8.Cornell Medical CenterNew YorkUSA
  9. 9.University of Pittsburgh and Magee-Women’s HospitalPittsburghUSA
  10. 10.Walter Reed Army Medical Center Washington, DCUSA

Personalised recommendations