From genetic abnormality to metastases: murine models of breast cancer and their use in the development of anticancer therapies

Review

Summary

Numerous mouse models of mammary cancer have been developed that mimic selective aspects of human disease. The use of these models has enabled preclinical chemotherapeutic, chemoprevention, and genetic therapy studies in vivo, the testing of gene delivery systems, and the identification of tumour and metastasis suppressor and inducer genes. This review has discussed the most abundantly used murine models of mammary cancer including: spontaneous tumours, chemically induced tumours, orthotopic and syngeneic tumour transplantation, injected tumours, and genetically engineered mice with a predisposition to neoplasia. Each model has been discussed with regards to its merits and limitations for investigating the genetic and phenotypic alterations involved in the human disease as well as its potential usefulness for the development of new treatment strategies. To date no single mouse model is available with the ability to replicate the entire disease process, however, existing models continue to provide invaluable insights into breast cancer induction and progression that would be impossible to obtain using in vitro models alone.

Keywords

breast cancer in vivo models metastases 

Abbreviations

ADAMTS

a disintegrin-like and metalloprotease with thrombospondin motifs

CCID

cell culture infective doses

EGFR

epidermal growth factor receptor

ER

estrogen receptor

LOH

loss of heterozygosity

MMPs

matrix metalloproteinases

MMTV

mouse mammary tumour virus

MMTV-LTR

mouse mammary tumour virus longterminal repeat

MT

metallothionein

NDF

Neu differentiation factor

NOD

nonobese diabetic

SERM

selective estrogen receptor modulator

TGFβ

transforming growth factor-beta

TIMP2

tissue inhibitor of metalloproteinase

WAP

Whey acidic protein

References

  1. 1.
    Nathanson KL, Wooster R, Weber BL, Breast cancer genetics: what we know and what we need Nat Med 75:552–556, 2001CrossRefPubMedGoogle Scholar
  2. 2.
    Nicoletto MO, Donach M, De Nicolo A, Artioli G, Banna G, Monfardini S, BRCA-1 and BRCA-2 mutations as prognostic factors in clinical practice and genetic counselling Cancer Treat Rev 275:295–304, 2001CrossRefPubMedGoogle Scholar
  3. 3.
    Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K, Environmental and heritable factors in the causation of cancer – analyses of cohorts of twins from Sweden, Denmark, and Finland N Engl J Med 3432:78–85, 2000CrossRefPubMedGoogle Scholar
  4. 4.
    Bieche I, Lidereau R, Genetic alterations in breast cancer Genes Chromosomes Cancer 144:227–251, 1995PubMedGoogle Scholar
  5. 5.
    Cameron DA, Gregory WM, Bowman A, Anderson ED, Levack P, Forouhi P, Leonard RC, Identification of long-term survivors in primary breast cancer by dynamic modelling of tumour response Br J Cancer 831:98–103, 2000CrossRefPubMedGoogle Scholar
  6. 6.
    Thiery JP, Epithelial–mesenchymal transitions in tumour progression Nat Rev Cancer 26:442–454, 2002CrossRefPubMedGoogle Scholar
  7. 7.
    Gotzmann J, Mikula M, Eger A, Schulte-Hermann R, Foisner R, Beug H, Mikulits W, Molecular aspects of epithelial cell plasticity: implications for local tumor invasion and metastasis Mutat Res 5661:9–20, 2004CrossRefPubMedGoogle Scholar
  8. 8.
    Zlotnik A, Chemokines in neoplastic progression Semin Cancer Biol 143:181–185, 2004CrossRefPubMedGoogle Scholar
  9. 9.
    Fidler IJ, Selection of successive tumour lines for metastasis Nat New Biol 242118:148–149, 1973PubMedGoogle Scholar
  10. 10.
    Rudland PS, Fernig DG, Smith JA, Growth factors and their receptors in neoplastic mammary glands Biomed Pharmacother 499:389–399, 1995CrossRefPubMedGoogle Scholar
  11. 11.
    Chirgwin JM, Guise TA, Interactions between tumor and bone alter the phenotypes of both J Musculoskelet Neuronal Interact 34:278–281; discussion 292–274, 2003PubMedGoogle Scholar
  12. 12.
    Chirgwin JM, Mohammad KS, Guise TA, Tumor–bone cellular interactions in skeletal metastases J Musculoskelet Neuronal Interact 43:308–318, 2004PubMedGoogle Scholar
  13. 13.
    Mundy GR, Metastasis to bone: causes, consequences and therapeutic opportunities Nat Rev Cancer 28:584–593, 2002CrossRefPubMedGoogle Scholar
  14. 14.
    Body JJ, Metastatic bone disease: clinical and therapeutic aspects Bone13Suppl 1:S57–S62, 1992PubMedCrossRefGoogle Scholar
  15. 15.
    Guise TA, Mundy GR, Cancer and bone Endocr Rev 191:18–54, 1998CrossRefPubMedGoogle Scholar
  16. 16.
    Fargiano AA, Desai KV, Green JE, Interrogating mouse mammary cancer models: insights from gene expression profiling J Mammary Gland Biol Neoplasia 83:321–334, 2003CrossRefPubMedGoogle Scholar
  17. 17.
    Guise TA, Kozlow WM, Heras-Herzig A, Padalecki SS, Yin JJ, Chirgwin JM, Molecular mechanisms of breast cancer metastases to bone Clin Breast Cancer5Suppl 2:S46–S53, 2005PubMedCrossRefGoogle Scholar
  18. 18.
    Wagner KU, Models of breast cancer: quo vadis, animal modeling? Breast Cancer Res 61:31–38, 2004CrossRefPubMedGoogle Scholar
  19. 19.
    Bennett LM, McAllister KA, Malphurs J, Ward T, Collins NK, Seely JC, Gowen LC, Koller BH, Davis BJ, Wiseman RW, Mice heterozygous for a Brca1 or Brca2 mutation display distinct mammary gland and ovarian phenotypes in response to diethylstilbestrol Cancer Res 6013:3461–3469, 2000PubMedGoogle Scholar
  20. 20.
    Liu B, Wang Y, Melana SM, Pelisson I, Najfeld V, Holland JF, Pogo BG, Identification of a proviral structure in human breast cancer Cancer Res 614:1754–1759, 2001PubMedGoogle Scholar
  21. 21.
    Rosol TJ, Tannehill-Gregg SH, LeRoy BE, Mandl S, Contag CH, Animal models of bone metastasis Cancer 973 Suppl:748–757, 2003CrossRefPubMedGoogle Scholar
  22. 22.
    Nadon NL, Doersen CJ, Lade DA, Medina K, Thompson L, Rohrer M, Gimble JM, Multiple cellular phenotypes in an insertional mutation in mouse affecting bone development Calcif Tissue Int 676:449–454, 2000CrossRefPubMedGoogle Scholar
  23. 23.
    Gravekamp C, Sypniewska R, Gauntt S, Tarango M, Price P, Reddick R, Behavior of metastatic and nonmetastatic breast tumors in old mice Exp Biol Med (Maywood) 2297:665–675, 2004Google Scholar
  24. 24.
    Tarin D, McKinnell RG, Nace GW, Artificially induced metastasis by cells from spontaneous Lucke renal adenocarcinoma Invasion Metastasis 44:198–208, 1984PubMedGoogle Scholar
  25. 25.
    Michigami T, Hiraga T, Williams PJ, Niewolna M, Nishimura R, Mundy GR, Yoneda T, The effect of the bisphosphonate ibandronate on breast cancer metastasis to visceral organs Breast Cancer Res Treat 753:249–258, 2002CrossRefPubMedGoogle Scholar
  26. 26.
    Mundy GR, Yoneda T, Hiraga T, Preclinical studies with zoledronic acid and other bisphosphonates: impact on the bone microenvironment Semin Oncol 282 Suppl 6:35–44. 2001CrossRefPubMedGoogle Scholar
  27. 27.
    Sypniewska RK, Hoflack L, Tarango M, Gauntt S, Leal BZ, Reddick RL, Gravekamp C, Prevention of metastases with a Mage-b DNA vaccine in a mouse breast tumor model: potential for breast cancer therapy Breast Cancer Res Treat 911:19–28, 2005CrossRefPubMedGoogle Scholar
  28. 28.
    Sloan EK, Stanley KL, Anderson RL, Caveolin-1 inhibits breast cancer growth and metastasis Oncogene 2347:7893–7897, 2004CrossRefPubMedGoogle Scholar
  29. 29.
    Hahn WC, Weinberg RA, Modelling the molecular circuitry of cancer Nat Rev Cancer 25:331–341, 2002CrossRefPubMedGoogle Scholar
  30. 30.
    Arguello F, Baggs RB, Frantz CN, A murine model of experimental metastasis to bone and bone marrow Cancer Res 4823:6876–6881, 1988PubMedGoogle Scholar
  31. 31.
    Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD, Doubrovin M, Ponomarev V, Gerald WL, Blasberg R, Massague J, Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors J Clin Invest 1151:44–55, 2005CrossRefPubMedGoogle Scholar
  32. 32.
    Yoneda T, Michigami T, Yi B, Williams PJ, Niewolna M, Hiraga T, Use of bisphosphonates for the treatment of bone metastasis in experimental animal models Cancer Treat Rev 255:293–299, 1999CrossRefPubMedGoogle Scholar
  33. 33.
    Paget S, The distribution of secondary growths in cancer of the breast Cancer Metastasis Rev 82:98–101, 1989PubMedGoogle Scholar
  34. 34.
    Yoneda T, Michigami T, Yi B, Williams PJ, Niewolna M, Hiraga T, Actions of bisphosphonate on bone metastasis in animal models of breast carcinoma Cancer 8812 Suppl:2979–2988, 2000CrossRefPubMedGoogle Scholar
  35. 35.
    Yoneda T, Sasaki A, Dunstan C, Williams PJ, Bauss F, De Clerck YA, Mundy GR, Inhibition of osteolytic bone metastasis of breast cancer by combined treatment with the bisphosphonate ibandronate and tissue inhibitor of the matrix metalloproteinase-2 J Clin Invest 9910:2509–2517, 1997PubMedGoogle Scholar
  36. 36.
    Zhang J, Dai J, Qi Y, Lin DL, Smith P, Strayhorn C, Mizokami A, Fu Z, Westman J, Keller ET, Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone J Clin Invest 10710:1235–1244, 2001PubMedGoogle Scholar
  37. 37.
    Sasaki A, Boyce BF, Story B, Wright KR, Chapman M, Boyce R, Mundy GR, Yoneda T, Bisphosphonate risedronate reduces metastatic human breast cancer burden in bone in nude mice Cancer Res 5516:3551–3557, 1995PubMedGoogle Scholar
  38. 38.
    Sasaki A, Kitamura K, Alcalde RE, Tanaka T, Suzuki A, Etoh Y, Matsumura T, Effect of a newly developed bisphosphonate, YH529, on osteolytic bone metastases in nude mice Int J Cancer 772:279–285, 1998CrossRefPubMedGoogle Scholar
  39. 39.
    Iwasaki T, Higashiyama M, Kuriyama K, Sasaki A, Mukai M, Shinkai K, Horai T, Matsuda H, Akedo H, NG-nitro-l-arginine methyl ester inhibits bone metastasis after modified intracardiac injection of human breast cancer cells in a nude mouse model Jpn J Cancer Res 889:861–866, 1997PubMedGoogle Scholar
  40. 40.
    Sargent NS, Oestreicher M, Haidvogl H, Madnick HM, Burger MM, Growth regulation of cancer metastases by their host organ Proc Natl Acad Sci USA 8519:7251–7255, 1988PubMedGoogle Scholar
  41. 41.
    Weber MH, Lee J, Orr FW, The effect of Neovastat (AE-941) on an experimental metastatic bone tumor model Int J Oncol 202:299–303, 2002PubMedGoogle Scholar
  42. 42.
    El Abdaimi K, Dion N, Papavasiliou V, Cardinal PE, Binderup L, Goltzman D, Ste-Marie LG, Kremer R, The vitamin D analogue EB 1089 prevents skeletal metastasis and prolongs survival time in nude mice transplanted with human breast cancer cells Cancer Res 6016:4412–4418, 2000PubMedGoogle Scholar
  43. 43.
    Kang MK, Kameta A, Shin KH, Baluda MA, Kim HR, Park NH, Senescence-associated genes in normal human oral keratinocytes Exp Cell Res 2872:272–281, 2003CrossRefPubMedGoogle Scholar
  44. 44.
    Ozzello L, Sordat B, Merenda C, Carrel S, Hurlimann J, Mach JP, Transplantation of a human mammary carcinoma cell line (BT 20) into nude mice J Natl Cancer Inst 525:1669–1672, 1974PubMedGoogle Scholar
  45. 45.
    Ozzello L, Sordat M, Behavior of tumors produced by transplantation of human mammary cell lines in athymic nude mice Eur J Cancer 164:553–559, 1980PubMedGoogle Scholar
  46. 46.
    Welsh J, Vitamin D compounds as potential therapeutics for estrogen-independent breast cancer Nutrition 1310:915–917, 1997CrossRefPubMedGoogle Scholar
  47. 47.
    Bao L, Jaligam V, Zhang XY, Kutner RH, Kantrow SP, Reiser J, Stable transgene expression in tumors and metastases after transduction with lentiviral vectors based on human immunodeficiency virus type 1 Hum Gene Ther 155:445–456, 2004CrossRefPubMedGoogle Scholar
  48. 48.
    Jenkins DE, Hornig YS, Oei Y, Dusich J, Purchio T, Bioluminescent human breast cancer cell lines that permit rapid and sensitive in vivo detection of mammary tumors and multiple metastases in immune deficient mice Breast Cancer Res 74:R444–R454, 2005CrossRefPubMedGoogle Scholar
  49. 49.
    Li X, Wang J, An Z, Yang M, Baranov E, Jiang P, Sun F, Moossa AR, Hoffman RM, Optically imageable metastatic model of human breast cancer Clin Exp Metastasis 194:347–350, 2002CrossRefPubMedGoogle Scholar
  50. 50.
    Hoffman RM, Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic Invest New Drugs 174:343–359, 1999CrossRefPubMedGoogle Scholar
  51. 51.
    Daoud SS, Leathers CW, Hurst JM, p53 expression, growth, and spontaneous metastasis of the human GI 101 breast carcinoma in athymic nude mice J Exp Ther Oncol 22:121–127, 2002CrossRefPubMedGoogle Scholar
  52. 52.
    Maillard S, Ameller T, Gauduchon J, Gougelet A, Gouilleux F, Legrand P, Marsaud V, Fattal E, Sola B, Renoir JM, Innovative drug delivery nanosystems improve the anti-tumor activity in vitro and in vivo of anti-estrogens in human breast cancer and multiple myeloma J Steroid Biochem Mol Biol 941–3:111–121, 2005CrossRefPubMedGoogle Scholar
  53. 53.
    Moon EY, Seong SK, Jung SH, Lee M, Lee DK, Rhee DK, Pyo S, Yoon SJ, Antitumor activity of 4-phenyl-1-arylsulfonylimidazolidinone, DW2143 Cancer Lett 1401–2:177–187, 1999CrossRefPubMedGoogle Scholar
  54. 54.
    Zinser GM, Tribble E, Valrance M, Urben CM, Knutson JC, Mazess RB, Strugnell SA, Welsh J, 1,24(S)-dihydroxyvitamin D2, an endogenous vitamin D2 metabolite, inhibits growth of breast cancer cells and tumors Anticancer Res 251A:235–241, 2005PubMedGoogle Scholar
  55. 55.
    Boucharaba A, Serre CM, Gres S, Saulnier-Blache JS, Bordet JC, Guglielmi J, Clezardin P, Peyruchaud O, Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer J Clin Invest 11412:1714–1725, 2004CrossRefPubMedGoogle Scholar
  56. 56.
    Miller FR, Xenograft models of premalignant breast disease J Mammary Gland Biol Neoplasia 54:379–391, 2000CrossRefPubMedGoogle Scholar
  57. 57.
    Flowers JL, Hoffman RM, Driscoll TA, Wall ME, Wani MC, Manikumar G, Friedman HS, Dewhirst M, Colvin OM, Adams DJ, The activity of camptothecin analogues is enhanced in histocultures of human tumors and human tumor xenografts by modulation of extracellular pH Cancer Chemother Pharmacol 523:253–261, 2003CrossRefPubMedGoogle Scholar
  58. 58.
    Beckhove P, Schutz F, Diel IJ, Solomayer EF, Bastert G, Foerster J, Feuerer M, Bai L, Sinn HP, Umansky V, et al. Efficient engraftment of human primary breast cancer transplants in nonconditioned NOD/Scid mice Int J Cancer 1054:444–453, 2003CrossRefPubMedGoogle Scholar
  59. 59.
    Chan WS, Page CM, Maclellan JR, Turner GA, The growth and metastasis of four commonly used tumour lines implanted into eight different sites: evidence for site and tumour effects Clin Exp Metastasis 63:233–244, 1988CrossRefPubMedGoogle Scholar
  60. 60.
    Juacaba SF, Horak E, Price JE, Tarin D, Tumor cell dissemination patterns and metastasis of murine mammary carcinoma Cancer Res 493:570–575, 1989PubMedGoogle Scholar
  61. 61.
    Potter KM, Juacaba SF, Price JE, Tarin D, Observations on organ distribution of fluorescein-labelled tumour cells released intravascularly Invasion Metastasis 34:221–233, 1983PubMedGoogle Scholar
  62. 62.
    Kawaguchi T, Nakamura K, [Cancer metastasis and blood vessels]Gan To Kagaku Ryoho 107:1569–1576, 1983PubMedGoogle Scholar
  63. 63.
    Miner KM, Kawaguchi T, Uba GW, Nicolson GL, Clonal drift of cell surface, melanogenic, and experimental metastatic properties of in vivo-selected, brain meninges-colonizing murine B16 melanoma Cancer Res 4211:4631–4638, 1982PubMedGoogle Scholar
  64. 64.
    Chambers AF, Tuck AB, Oncogene transformation and the metastatic phenotype Anticancer Res 85A:861–871, 1988PubMedGoogle Scholar
  65. 65.
    Nicolson GL, Belloni PN, Tressler RJ, Dulski K, Inoue T, Cavanaugh PG, Adhesive, invasive, and growth properties of selected metastatic variants of a murine large-cell lymphoma Invasion Metastasis 92:102–116, 1989PubMedGoogle Scholar
  66. 66.
    Pecheur I, Peyruchaud O, Serre CM, Guglielmi J, Voland C, Bourre F, Margue C, Cohen-Solal M, Buffet A, Kieffer N, et al. Integrin alpha(v)beta3 expression confers on tumor cells a greater propensity to metastasize to bone FASEB J 1610:1266–1268, 2002PubMedGoogle Scholar
  67. 67.
    Cardiff RD, Anver MR, Gusterson BA, Hennighausen L, Jensen RA, Merino MJ, Rehm S, Russo J, Tavassoli FA, Wakefield LM, et al. The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting Oncogene 198:968–988, 2000PubMedGoogle Scholar
  68. 68.
    Jhappan C, Stahle C, Harkins RN, Fausto N, Smith GH, Merlino GT, TGF alpha overexpression in transgenic mice induces liver neoplasia and abnormal development of the mammary gland and pancreas Cell 616:1137–1146, 1990CrossRefPubMedGoogle Scholar
  69. 69.
    Matsui Y, Halter SA, Holt JT, Hogan BL, Coffey RJ, Development of mammary hyperplasia and neoplasia in MMTV-TGF alpha transgenic mice Cell 616:1147–1155, 1990CrossRefPubMedGoogle Scholar
  70. 70.
    Sandgren EP, Luetteke NC, Palmiter RD, Brinster RL, Lee DC, Overexpression of TGF alpha in transgenic mice: induction of epithelial hyperplasia, pancreatic metaplasia, and carcinoma of the breast Cell 616:1121–1135, 1990CrossRefPubMedGoogle Scholar
  71. 71.
    Sandgren EP, Schroeder JA, Qui TH, Palmiter RD, Brinster RL, Lee DC, Inhibition of mammary gland involution is associated with transforming growth factor alpha but not c-myc-induced tumorigenesis in transgenic mice Cancer Res 5517:3915–3927, 1995PubMedGoogle Scholar
  72. 72.
    Rose-Hellekant TA, Sandgren EP, Transforming growth factor alpha- and c-myc-induced mammary carcinogenesis in transgenic mice Oncogene 198:1092–1096, 2000CrossRefPubMedGoogle Scholar
  73. 73.
    Krane IM, Leder P, NDF/heregulin induces persistence of terminal end buds and adenocarcinomas in the mammary glands of transgenic mice Oncogene 128:1781–1788, 1996PubMedGoogle Scholar
  74. 74.
    Slamon DJ, Clark GM, Amplification of c-erbB-2 and aggressive human breast tumors?Science 2404860:1795–1798, 1988PubMedGoogle Scholar
  75. 75.
    Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer Science 2444905:707–712, 1989PubMedGoogle Scholar
  76. 76.
    Bouchard L, Lamarre L, Tremblay PJ, Jolicoeur P, Stochastic appearance of mammary tumors in transgenic mice carrying the MMTV/c-neu oncogene Cell 576:931–936, 1989CrossRefPubMedGoogle Scholar
  77. 77.
    Guy CT, Cardiff RD, Muller WJ, Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease Mol Cell Biol 123:954–961, 1992PubMedGoogle Scholar
  78. 78.
    Guy CT, Cardiff RD, Muller WJ, Activated neu induces rapid tumor progression J Biol Chem 27113:7673–7678, 1996CrossRefPubMedGoogle Scholar
  79. 79.
    Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ, Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease Proc Natl Acad Sci USA 8922:10578–10582, 1992PubMedGoogle Scholar
  80. 80.
    Muller WJ, Lee FS, Dickson C, Peters G, Pattengale P, Leder P, The int-2 gene product acts as an epithelial growth factor in transgenic mice EMBO J 93:907–913, 1990PubMedGoogle Scholar
  81. 81.
    Siegel PM, Dankort DL, Hardy WR, Muller WJ, Novel activating mutations in the neu proto-oncogene involved in induction of mammary tumors Mol Cell Biol 1411:7068–7077, 1994PubMedGoogle Scholar
  82. 82.
    Menard S, Aiello P, Tagliabue E, Rumio C, Lollini PL, Colnaghi MI, Balsari A, Tamoxifen chemoprevention of a hormone-independent tumor in the proto-neu transgenic mice model Cancer Res 602:273–275, 2000PubMedGoogle Scholar
  83. 83.
    Sacco MG, Soldati S, Indraccolo S, Cato EM, Cattaneo L, Scanziani E, Vezzoni P, Combined antiestrogen, antiangiogenic and anti-invasion therapy inhibits primary and metastatic tumor growth in the MMTVneu model of breast cancer Gene Ther 1022:1903–1909, 2003CrossRefPubMedGoogle Scholar
  84. 84.
    Kobayashi H, Hamaya E, [Raloxifene hydrochloride (Evista Tablet 60 mg) for postmenopausal osteoporosis: mode of action and clinical efficacy]Nippon Yakurigaku Zasshi 1251:37–48. 2005PubMedGoogle Scholar
  85. 85.
    Noguchi S, Koyama H, Uchino J, Abe R, Miura S, Sugimachi K, Akazawa K, Abe O, Postoperative adjuvant therapy with tamoxifen, tegafur plus uracil, or both in women with node-negative breast cancer: a pooled analysis of six randomized controlled trials J Clin Oncol 23(10):2172–2184, 2005CrossRefPubMedGoogle Scholar
  86. 86.
    Wu K, Zhang Y, Xu XC, Hill J, Celestino J, Kim HT, Mohsin SK, Hilsenbeck SG, Lamph WW, Bissonette R, et al. The retinoid X receptor-selective retinoid, LGD1069, prevents the development of estrogen receptor-negative mammary tumors in transgenic mice Cancer Res 62(22):6376–6380, 2002PubMedGoogle Scholar
  87. 87.
    Howe LR, Brown AM, Wnt signaling and breast cancer Cancer Biol Ther 3(1):36–41, 2004PubMedGoogle Scholar
  88. 88.
    Kwan H, Pecenka V, Tsukamoto A, Parslow TG, Guzman R, Lin TP, Muller WJ, Lee FS, Leder P, Varmus HE, Transgenes expressing the Wnt-1 and int-2 proto-oncogenes cooperate during mammary carcinogenesis in doubly transgenic mice Mol Cell Biol 12(1):147–154, 1992PubMedGoogle Scholar
  89. 89.
    Nass SJ, Dickson RB, Defining a role for c-Myc in breast tumorigenesis Breast Cancer Res Treat 44(1):1–22, 1997CrossRefPubMedGoogle Scholar
  90. 90.
    Shibata MA, Ward JM, Devor DE, Liu ML, Green JE, Progression of prostatic intraepithelial neoplasia to invasive carcinoma in C3(1)/SV40 large T antigen transgenic mice: histopathological and molecular biological alterations Cancer Res 5621:4894–4903, 1996PubMedGoogle Scholar
  91. 91.
    Stewart TA, Pattengale PK, Leder P, Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes Cell 383:627–637, 1984CrossRefPubMedGoogle Scholar
  92. 92.
    Harris SL, Levine AJ, The p53 pathway: positive and negative feedback loops Oncogene 2417:2899–2908, 2005CrossRefPubMedGoogle Scholar
  93. 93.
    Elledge RM, Clark GM, Fuqua SA, Yu YY, Allred DC, p53 protein accumulation detected by five different antibodies: relationship to prognosis and heat shock protein 70 in breast cancer Cancer Res 5414:3752–3757, 1994PubMedGoogle Scholar
  94. 94.
    Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA, Jr Butel JS, Bradley A, Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours Nature 3566366:215–221, 1992CrossRefPubMedGoogle Scholar
  95. 95.
    Li B, Rosen JM, McMenamin-Balano J, Muller WJ, Perkins AS, neu/ERBB2 cooperates with p53-172H during mammary tumorigenesis in transgenic mice Mol Cell Biol 17(6):3155–3163, 1997PubMedGoogle Scholar
  96. 96.
    Li Q, Yoshioka N, Yutsudo M, Inafuku S, Aozasa K, Kitamura Y, Aizawa S, Nishimune Y, Hakura A, Kondoh G, Human papillomavirus-induced carcinogenesis with p53 deficiency in mouse: novel lymphomagenesis in HPV16E6E7 transgenic mice mimicking p53 defect Virology 2521:28–33, 1998CrossRefPubMedGoogle Scholar
  97. 97.
    Green JE, Shibata MA, Yoshidome K, Liu ML, Jorcyk C, Anver MR, Wigginton J, Wiltrout R, Shibata E, Kaczmarczyk S, et al. The C3(1)/SV40 T-antigen transgenic mouse model of mammary cancer: ductal epithelial cell targeting with multistage progression to carcinoma Oncogene 19(8):1020–1027, 2000CrossRefPubMedGoogle Scholar
  98. 98.
    Maroulakou IG, Anver M, Garrett L, Green JE, Prostate and mammary adenocarcinoma in transgenic mice carrying a rat C3(1) simian virus 40 large tumor antigen fusion gene Proc Natl Acad Sci USA 91(23):11236–11240, 1994PubMedGoogle Scholar
  99. 99.
    Dickson C, Fantl V, Gillett C, Brookes S, Bartek J, Smith R, Fisher C, Barnes D, Peters G, Amplification of chromosome band 11q13 and a role for cyclin D1 in human breast cancer Cancer Lett 90(1):43–50, 1995CrossRefPubMedGoogle Scholar
  100. 100.
    Bartkova J, Lukas J, Muller H, Lutzhoft D, Strauss M, Bartek J, Cyclin D1 protein expression and function in human breast cancer Int J Cancer 573:353–361, 1994PubMedGoogle Scholar
  101. 101.
    Lee RJ, Albanese C, Stenger RJ, Watanabe G, Inghirami G, Haines GK, 3 Webster M, Muller WJ, Brugge JS, Davis RJ, et al. pp60(v-src) induction of cyclin D1 requires collaborative interactions between the extracellular signal-regulated kinase, p38, and Jun kinase pathways. A role for cAMP response element-binding protein and activating transcription factor-2 in pp60(v-src) signaling in breast cancer cells J Biol Chem 274(11):7341–7350, 1999CrossRefPubMedGoogle Scholar
  102. 102.
    Liu CH, Chang SH, Narko K, Trifan OC, Wu MT, Smith E, Haudenschild C, Lane TF, Hla T, Overexpression of cyclooxygenase-2 is sufficient to induce tumorigenesis in transgenic mice J Biol Chem 276(21):18563–18569, 2001CrossRefPubMedGoogle Scholar
  103. 103.
    Daphna-Iken D, Shankar DB, Lawshe A, Ornitz DM, Shackleford GM, MacArthur CA, MMTV-Fgf8 transgenic mice develop mammary and salivary gland neoplasia and ovarian stromal hyperplasia Oncogene 17(21):2711–2717, 1998CrossRefPubMedGoogle Scholar
  104. 104.
    Moody SE, Sarkisian CJ, Hahn KT, Gunther EJ, Pickup S, Dugan KD, Innocent N, Cardiff RD, Schnall MD, Chodosh LA, Conditional activation of Neu in the mammary epithelium of transgenic mice results in reversible pulmonary metastasis Cancer Cell 2(6):451–461, 2002CrossRefPubMedGoogle Scholar
  105. 105.
    Smith GH, Gallahan D, Diella F, Jhappan C, Merlino G, Callahan R, Constitutive expression of a truncated INT3 gene in mouse mammary epithelium impairs differentiation and functional development Cell Growth Differ 6(5):563–577, 1995PubMedGoogle Scholar
  106. 106.
    Lin EY, Jones JG, Li P, Zhu L, Whitney KD, Muller WJ, Pollard JW, Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases Am J Pathol 163(5):2113–2126, 2003PubMedGoogle Scholar
  107. 107.
    Chatterjee G, Rosner A, Han Y, Zelazny ET, Li B, Cardiff RD, Perkins AS, Acceleration of mouse mammary tumor virus-induced murine mammary tumorigenesis by a p53 172H transgene: influence of FVB background on tumor latency and identification of novel sites of proviral insertion Am J Pathol 161(6):2241–2253, 2002PubMedGoogle Scholar
  108. 108.
    D’Cruz CM, Gunther EJ, Boxer RB, Hartman JL, Sintasath L, Moody SE, Cox JD, Ha SI, Belka GK, Golant A, et al. c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations Nat Med 7(2):235–239, 2001CrossRefPubMedGoogle Scholar
  109. 109.
    Smith GH, Sharp R, Kordon EC, Jhappan C, Merlino G, Transforming growth factor-alpha promotes mammary tumorigenesis through selective survival and growth of secretory epithelial cells Am J Pathol 147(4):1081–1096, 1995PubMedGoogle Scholar
  110. 110.
    Gallahan D, Jhappan C, Robinson G, Hennighausen L, Sharp R, Kordon E, Callahan R, Merlino G, Smith GH, Expression of a truncated Int3 gene in developing secretory mammary epithelium specifically retards lobular differentiation resulting in tumorigenesis Cancer Res 56(8):1775–1785, 1996PubMedGoogle Scholar
  111. 111.
    Schulze-Garg C, Lohler J, Gocht A, Deppert W, A transgenic mouse model for the ductal carcinoma in situ (DCIS) of the mammary gland Oncogene 19(8):1028–1037, 2000CrossRefPubMedGoogle Scholar
  112. 112.
    Hadsell DL, Greenberg NM, Fligger JM, Baumrucker CR, Rosen JM, Targeted expression of des(1–3) human insulin-like growth factor I in transgenic mice influences mammary gland development and IGF-binding protein expression Endocrinology 137(1):321–330, 1996CrossRefPubMedGoogle Scholar
  113. 113.
    Gallego MI, Bierie B, Hennighausen L, Targeted expression of HGF/SF in mouse mammary epithelium leads to metastatic adenosquamous carcinomas through the activation of multiple signal transduction pathways Oncogene 22(52):8498–8508, 2003CrossRefPubMedGoogle Scholar
  114. 114.
    Strange R, Li F, Saurer S, Burkhardt A, Friis RR, Apoptotic cell death and tissue remodelling during mouse mammary gland involution Development 115(1):49–58, 1992PubMedGoogle Scholar
  115. 115.
    Lin SC, Lee KF, Nikitin AY, Hilsenbeck SG, Cardiff RD, Li A, Kang KW, Frank SA, Lee WH, Lee EY, Somatic mutation of p53 leads to estrogen receptor alpha-positive and -negative mouse mammary tumors with high frequency of metastasis Cancer Res 64(10):3525–3532, 2004CrossRefPubMedGoogle Scholar
  116. 116.
    Jager R, Herzer U, Schenkel J, Weiher H, Overexpression of Bcl-2 inhibits alveolar cell apoptosis during involution and accelerates c-myc-induced tumorigenesis of the mammary gland in transgenic mice Oncogene 15(15):1787–1795, 1997CrossRefPubMedGoogle Scholar
  117. 117.
    Bates P, Fisher R, Ward A, Richardson L, Hill DJ, Graham CF, Mammary cancer in transgenic mice expressing insulin-like growth factor II (IGF-II) Br J Cancer 72(5):1189–1193, 1995PubMedGoogle Scholar
  118. 118.
    Bortner DM, Rosenberg MP, Induction of mammary gland hyperplasia and carcinomas in transgenic mice expressing human cyclin E Mol Cell Biol 17(1):453–459, 1997PubMedGoogle Scholar
  119. 119.
    Jerry DJ, Kittrell FS, Kuperwasser C, Laucirica R, Dickinson ES, Bonilla PJ, Butel JS, Medina D, A mammary-specific model demonstrates the role of the p53 tumor suppressor gene in tumor development Oncogene 19(8):1052–1058, 2000CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Academic Unit of Clinical Oncology, School of Medicine and Biomedical Sciences University of SheffieldSheffieldUK
  2. 2.Academic Unit of Clinical Oncology, Division of Genomic Medicine, School of Medicine and Biomedical SciencesUniversity of SheffieldSheffieldUK

Personalised recommendations