Breast Cancer Research and Treatment

, Volume 95, Issue 1, pp 65–72 | Cite as

Polymorphisms of the promoter regions of matrix metalloproteinases genes MMP-1 and MMP-9 in breast cancer

  • Karolina Przybylowska
  • Anita Kluczna
  • Marek Zadrozny
  • Tadeusz Krawczyk
  • Andrzej Kulig
  • Jan Rykala
  • Agnieszka Kolacinska
  • Zbigniew Morawiec
  • Jozef Drzewoski
  • Janusz Blasiak



Matrix metalloproteinases play a crucial role in the cancer invasion and metastasis, angiogenesis and tumorigenicity. A single guanine insertion – the 1G/2G polymorphism in the promoter of the matrix metalloproteinase 1 (MMP-1) gene creates a binding site for the transcription factor AP-1 and thus may affect the transcription level of MMP-1. The C→T substitution at the polymorphic site of the MMP-9 gene promoter results in a higher transcription activity of the T-allelic promoter trough the loss of binding site for a repressor protein. The aim of this work was to investigate the influence of 1G/2G and C→T polymorphisms on the MMP-1 and MMP-9 level and therefore on the occurrence and progression of breast cancer.

Experimental design

We investigated the distribution of genotypes and frequency of alleles of the 1G/2G and C→T polymorphisms for 270 patients with breast cancer and 300 healthy women served as control. The genotypes were determined by RFLP-PCR. Additionally, we estimated the level of MMP-1 and MMP-9 antigens in tumor samples and normal breast tissue using ELISA.


The levels of MMP-1 in tumor samples of node positive patients ware significantly higher than in samples of node negative patients (p<0.05). Increased level of MMP-9 correlates with Bloom-Richardson grading III (p<0.05), increased tumor size (p<0.05) and absence of estrogen and progesterone receptors (p<0.01). Additionally, both MMP-1 and MMP-9 levels were higher in tumor than in the normal breast tissue. We showed the higher risk of metastasis development in lymph node for the 2G/2G genotype (OR=2.14; CI 95% 1.24;3.69) and the 2G allele carriers (OR=1.68; CI 95% 1.19;2.39). We found correlation between the T allele (OR=2.61; CI 95% 1.33;4.87), 2G (OR=2.58; CI 95% 1.35;4.91) and malignance.


The results suggest that MMP-1 is responsible for the local invasion and MMP-9 is associated with the malignance and the growth of the tumor. We suggest that the 2G allele of the 1G/2G MMP-1 gene polymorphism may be associated with the lymph node metastasis in patients with breast cancer and therefore it can be considered as a progression marker in this disease.

Key words:

breast cancer gene polymorphism matrix metalloproteinases (MMPs) MMP-1 gene MMP-9 gene tumour progression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the grants 6P05A 045 21 from KBN (KP) and 505/363 from University of Lodz (JB).


  1. 1.
    Jones JL, Shaw JA, Pringle JH, Walker RA., Priy breast myoepithelial cells exert an invasion-suppressor effect on breast cancer cells via paracrine down-regulation of MMP expression in fibroblasts and tumour cells J Pathol 2003;201:562–572CrossRefPubMedGoogle Scholar
  2. 2.
    Curran S, Murray GI., Matrix metalloproteinases in tumour invasion and metastasis J Pathol 1999;189:300–308CrossRefPubMedGoogle Scholar
  3. 3.
    Kondo S, Kubota S, Shimo T, Nishida T, Yosimichi G, Eguchi T, Sugahara T, Takigawa M., Connective tissue growth factor increased by hypoxia initiate angiogenesis in collaboration with matrix metalloproteinases Carcinogenesis 2002;23:769–776CrossRefPubMedGoogle Scholar
  4. 4.
    Forget MA, Desrosiers RR, Beliveau R, Physiological roles of matrix metalloproteinases: implications for tumor growth and metastasis Can J Physiol Pharmacol 1999;77:465–480CrossRefPubMedGoogle Scholar
  5. 5.
    Nikkola J, Vihinen P, Vuoristo MS, Kellokumpu-Lehtinen P, Kahari VM, Pyrhonen S: High serum levels of matrix metalloproteinase-9 and matrix metalloproteinase-1 are associated with rapid progression in patients with metastatic melanoma. Clin Cancer Res 11(14): 5158–5166, 2005Google Scholar
  6. 6.
    Yasui W, Oue N, Aung PP, Matsumura S, Shutoh M, Nakayama H, Molecular-pathological prognostic factors of gastric cancer: a review Gastric Cancer 2005;8(2):86–94CrossRefPubMedGoogle Scholar
  7. 7.
    Curran S, Dundas SR, Buxton J, Leeman MF, Ramsay R, Murray GI, Matrix metalloproteinase/tissue inhibitors of matrix metalloproteinase phenotype identifies poor prognosis colorectal cancersClin Cancer Res 2004 10(24):8229–8234CrossRefPubMedGoogle Scholar
  8. 8.
    Meller D, Li DQ, Tseng SC, Regulation of collagenase, stromelysin, and gelatinase B in human conctival and conctivochalasis fibroblasts by interleukin-1beta and tumor necrosis factor-alpha Invest Ophthalmol Vis Sci 2000 41(10):2922–2929PubMedGoogle Scholar
  9. 9.
    Bachmeier BE, Nerlich AG, Lichtinghagen R, Sommerhoff CP, Matrix metalloproteinases (MMPs) in breast cancer cell lines of different tumorigenicity Anticancer Res 2001 21:3821–3828PubMedGoogle Scholar
  10. 10.
    Benaud C, Dickson RB, Thompson EW, Roles of the matrix metalloproteinases in mamy gland development and cancer Breast Cancer Res Treat 1998;50:97–116CrossRefPubMedGoogle Scholar
  11. 11.
    Brinckerhoff CE, Rutter JL, Benbow U, Interstitial collagenases as kers of tumor progression Clin Cancer Res. 2000;6:4823–30PubMedGoogle Scholar
  12. 12.
    Jones JL, Walker RA., Control of matrix metalloproteinase activity in cancer J Pathol. 1997;183:377–9CrossRefPubMedGoogle Scholar
  13. 13.
    Behrens P, Rothe M, Wellmann A, Krischler J, Wernert N, The Ets-1 transcription factor is up-regulated together with MMP 1 and MMP 9 in the stroma of pre-invasive breast cancer J Pathol 2001 194(1):43–50CrossRefPubMedGoogle Scholar
  14. 14.
    Rutter JL, Mitchell TI, Buttice G, Meyers J, Gusella JF, Ozelius LJ, Brinckerhoff CE, A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter creates an Ets binding site and augments transcription Cancer Res 1998 58(23):5321–5325PubMedGoogle Scholar
  15. 15.
    Jurajda M, Muzik J, Izakovicova Holla L, Vacha J, A newly identified single nucleotide polymorphism in the promoter of the matrix metalloproteinase-1 gene Mol Cell Prob 16:63–66, 2002CrossRefGoogle Scholar
  16. 16.
    Kanamori Y, Matsushima M, Minaguchi T, Kobayashi K, Sagae S, Kudo R, Terakawa N, Nakamura Y: Correlation between expression of the matrix metalloproteinase-1 gene in ovarian cancers and an insertion/deletion polymorphism in its promoter region. Cancer Res 59(17): 4225–4227, 1999Google Scholar
  17. 17.
    Nishioka Y, Kobayashi K, Sagae S, Ishioka S, Nishikawa A, Matsushima M, Kanamori Y, Minaguchi T, Nakamura Y, Tokino T, Kudo R, A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter in endometrial carcinomas Jpn J Cancer Res 2000;91:612–615PubMedGoogle Scholar
  18. 18.
    Zhang B, Ye S, Herrmann SM, Eriksson P, de Maat M, Evans A, Arveiler D, Luc G, Cambien F, Hamsten A, Watkins H, Henney AM, Functional polymorphism in the regulatory region of gelatinase B gene in relation to severity of coronary atherosclerosis Circulation 1999;99:1788–1794PubMedGoogle Scholar
  19. 19.
    Dunleavey L, Beyzade S, Ye S, Rapid genotype analysis of the matrix metalloproteinase-1 gene 1G/2G polymorphism that is associated with risk of cancer Matrix Biol 2000;19:175–177CrossRefPubMedGoogle Scholar
  20. 20.
    Weiss L, Comments on hematogenous metastatic patterns in humans as revealed by autopsy Clin Exp Metastasis. 1992 10:191–199CrossRefPubMedGoogle Scholar
  21. 21.
    Iwata H., Kobayashi S., Iwase H., Masaoka A., Fujimoto N., Okada Y, Production of matrix metalloproteinases and tissue inhibitors of metalloproteinases in human breast carcinomas Jpn J Cancer Res 1999;87:602–611Google Scholar
  22. 22.
    Itoh F., Yamamoto H., Hinoda Y., Imai K, Enhanced secretion and activation of ,matrylisin during malignant conversion of human colorectal epithelium and its relationship with invasive potential of colon cancer cells Cancer (Phila.) 1996;77:1717–1721Google Scholar
  23. 23.
    Benbow U, Schoenermark MP, Orndorff KA, Givan AL, Brinckerhoff CE, :Human breast cancer cells activate procollagenase-1 and invade type I collagen: invasion is inhibited by all-trans retinoic acid Clin Exp Metastasis 17: 231–238, 1999CrossRefPubMedGoogle Scholar
  24. 24.
    Balduyck M, Zerimech F, Gouyer V, Lemaire R, Hemon B, Grard G, Thiebaut C, Lemaire V, Dacquembronne E, Duhem T, Lebrun A, Dejonghe MJ, Huet G, Specific expression of matrix metalloproteinases 1, 3, 9 and 13 associated with invasiveness of breast cancer cells in vitro Clin Exp Metastasis 18:171–178, 2000CrossRefPubMedGoogle Scholar
  25. 25.
    Biondi ML, Turri O, Leviti S, Seminati R, Cecchini F, Bernini M, Ghilardi G, Guagnellini E: MMP1 and MMP3 polymorphisms in promoter regions and cancer. Clin Chem. 46 (12): 2023–2024, 2000Google Scholar
  26. 26.
    Ghilardi G, Biondi ML, Caputo M, Leviti S, DeMonti M, Guagnellini E, Scorza R: A single nucleotide polymorphism in the matrix metalloproteinase-3 promoter enhances breast cancer susceptibility Clin Cancer Res 8(12): 3820–3823, 2002Google Scholar
  27. 27.
    Tower GB, Coon CI, Brinckerhoff CE, The 2G single nucleotide polymorphism (SNP) in the MMP-1 promoter contributes to high levels of MMP-1 transcription in MCF-7/ADR breast cancer cells Breast Cancer Res Treat 2003;82:75–82CrossRefPubMedGoogle Scholar
  28. 28.
    van der Stappen JW, Hendriks T, Wobbes T., Correlation between collagenolytic activity and grade of histological differentiation in colorectal tumors Int J Cancer 1990;45:1071–1078PubMedCrossRefGoogle Scholar
  29. 29.
    Li HC, Cao DC, Liu Y, Hou YF, Wu J, Lu JS, Di GH, Liu G, Li FM, Ou ZL, Jie C, Shen ZZ, Shao ZM: Prognostic value of matrix metalloproteinases (MMP-2 and MMP-9) in patients with lymph node-negative breast carcinoma. Breast Cancer Res Treat 88(1): 75–85, 2004Google Scholar
  30. 30.
    Ghilardi G, Biondi ML, Mangoni J, Leviti S, DeMonti M, Guagnellini E, Scorza R, Matrix metalloproteinase-1 promoter polymorphism 1G/2G is correlated with colorectal cancer invasiveness Clin Cancer Res. 2001;7:2344–2346PubMedGoogle Scholar
  31. 31.
    Goto F, Goto K, Weindel K, Folkman Synergistic effects of vascular endothelial growth factor and basic fibroblast growth factor on the proliferation and cord formation of bovine capillary endothelial. cells within collagen gels J Lab Invest 1993;69:508–517Google Scholar
  32. 32.
    Chantrain CF, Shimada H, Jodele S, Groshen S, Ye W, Shalinsky DR, Werb Z, Coussens LM, lerck YA., Stromal matrix metalloproteinase-9 regulates the vascular architecture in neuroblastoma by promoting pericyte recruitment Cancer Res. 2004; 64:1675–1686CrossRefPubMedGoogle Scholar
  33. 33.
    Lee PP, Hwang JJ, Murphy G, Ip MM., Functional significance of MMP-9 in tumor necrosis factor-induced proliferation and branching morphogenesis of mamy epithelial cells Endocrinology. 2000;141:3764–3773CrossRefPubMedGoogle Scholar
  34. 34.
    Duffy MJ, Blaser J, Duggan C, McDermott E, O’Higgins N, Fennelly JJ, Tschesche H., Assay of matrix metalloproteases types 8 and 9 by ELISA in human breast cancer Br J Cancer. 1995;71:1025–1028PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Karolina Przybylowska
    • 1
  • Anita Kluczna
    • 1
  • Marek Zadrozny
    • 2
  • Tadeusz Krawczyk
    • 2
  • Andrzej Kulig
    • 2
  • Jan Rykala
    • 3
  • Agnieszka Kolacinska
    • 3
  • Zbigniew Morawiec
    • 3
  • Jozef Drzewoski
    • 4
  • Janusz Blasiak
    • 1
  1. 1.Department of Molecular GeneticsUniversity of LodzLodzPoland
  2. 2.Polish Mother’s Memorial Hospital – Research InstituteLodzPoland
  3. 3.Department of Surgical OncologyN. Copernicus Memorial HospitalLodzPoland
  4. 4.Department of Clinical PharmacologyMedical University of LodzLodzPoland

Personalised recommendations