Advertisement

Breast Cancer Research and Treatment

, Volume 93, Supplement 1, pp 19–25 | Cite as

Life following aromatase inhibitors – where now for endocrine sequencing?

  • Stephen R. Johnston
  • Lesley-Ann Martin
  • Mitch Dowsett
Article

Summary

The third-generation non-steroidal aromatase inhibitors (AIs) are challenging tamoxifen as treatments of choice for early and advanced breast cancer in postmenopausal women with estrogen receptor (ER)-positive disease. However, patients who initially respond to AIs eventually develop resistance to treatment and experience disease progression. To establish the optimal endocrine therapy following AI resistance, it is essential to understand the mechanisms that contribute to the loss of response. Data from in vitro models have suggested that acquired AI resistance is due to enhanced sensitization to low estrogen levels during long-term estrogen deprivation (LTED). Cross-talk between the ER and various growth-factor-receptor signaling pathways, including human epidermal growth factor receptor 2, and the insulin-like growth factor pathway, may also be implicated. Therefore, endocrine therapies that abolish estrogen signaling via removal of the ER could be effective in patients with AI-resistant disease. Fulvestrant (‘Faslodex’) is a new ER antagonist with no agonist effects that binds, blocks and degrades the ER. Due to its unique mode of action and lack of cross-resistance with existing treatments, fulvestrant is an effective therapeutic agent for use in sequential endocrine regimens. Fulvestrant has established efficacy in tamoxifen-resistant disease and there is a growing body of evidence demonstrating its efficacy in patients with AI-resistant disease. In preclinical models, MCF-7 cells undergoing LTED are refractory to tamoxifen but sensitive to fulvestrant, suggesting fulvestrant is a more appropriate choice following AI resistance. The steroidal AI, exemestane is also an option in non-steroidal AI-resistant disease. Clinical trials are underway to compare fulvestrant with exemestane as an appropriate therapy following the onset of AI resistance.

Keywords

breast cancer cell signaling EFECT endocrine therapy estrogen receptor epidermal growth factor fulvestrant gefitinib SOFEA tamoxifen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

We thank Dr Sarah Goodger from Complete Medical Communications Ltd, who provided medical writing support on behalf of AstraZeneca.

Reference

  1. 1.
    Mouridsen H, Gershanovich M, Sun Y, Perez-Carrion R, Boni C, Monnier A, Apffelstaedt J, Smith R, Sleeboom HP, Jaenicke F, Pluzanska A, Dank M, Becquart D, Bapsy PP, Salminen E, Snyder R, Chaudri-Ross H, Lang R, Wyld P, Bhatnagar A, (2003). Phase III study of letrozole versus tamoxifen as first-line therapy of advanced breast cancer in postmenopausal women: analysis of survival and update of efficacy from the International Letrozole Breast Cancer Group J Clin Oncol 21:2101–2109CrossRefPubMedGoogle Scholar
  2. 2.
    Nabholtz JM, Bonneterre J, Buzdar A, Robertson JFR, Thürlimann B, for the Arimidex Writing Committee on behalf of the Investigators: Anastrozole (Arimidex™) versus tamoxifen as first-line therapy for advanced breast cancer in postmenopausal women: survival analysis and updated safety results. Eur J Cancer 39:1684–1689, 2003Google Scholar
  3. 3.
    Boccardo F, Rubagotti A, Guglielmini P, Amoroso D, Fini A, Paladini G, Mesiti M, Romeo D, Rinaldini M, Scali S, Porpiglia M, Benedetto C: Switching to anastrozole versus continued tamoxifen treatment of early breast cancer. Preliminary results of the Italian Tamoxifen Anastrozole (ITA) trial. J Clin Oncol, in press: 2005Google Scholar
  4. 4.
    Coombes RC, Hall E, Gibson LJ, Paridaens R, Jassem J, Delozier T, Jones SE, Alvarez I, Bertelli G, Ortmann O, Coates AS, Bajetta E, Dodwell D, Coleman RE, Fallowfield LJ, Mickiewicz E, Andersen J, Lonning PE, Cocconi G, Stewart A, Stuart N, Snowdon CF, Carpentieri M, Massimini G, Bliss JM, (2004). A randomized trial of exemestane after two to three years of tamoxifen therapy in postmenopausal women with primary breast cancer N Engl J Med 350:1081–1092CrossRefPubMedGoogle Scholar
  5. 5.
    Goss PE, Ingle JN, Martino S, Robert NJ, Muss HB, Piccart MJ, Castiglione M, Tu D, Shepherd LE, Pritchard KI, Livingston RB, Davidson NE, Norton L, Perez EA, Abrams JS, Therasse P, Palmer MJ, Pater JL (2003). A randomized trial of letrozole in postmenopausal women after five years of tamoxifen therapy for early-stage breast cancer N Engl J Med 349:1793–1802CrossRefPubMedGoogle Scholar
  6. 6.
    The ATAC Trialists’ Group, (2005). Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. Lancet 365: 60–62CrossRefGoogle Scholar
  7. 7.
    Winer EP, Hudis C, Burstein HJ, Wolff AC, Pritchard KI, Ingle JN, Chlebowski RT, Gelber R, Edge SB, Gralow J, Cobleigh MA, Mamounas EP, Goldstein LJ, Whelan TJ, Powles TJ, Bryant J, Perkins C, Perotti J, Braun S, Langer AS, Browman GP, Somerfield MR, (2005). American Society of Clinical Oncology technology assessment on the use of aromatase inhibitors as adjuvant therapy for postmenopausal women with hormone receptor-positive breast cancer: status report 2004 J Clin Oncol 23: 619–629CrossRefPubMedGoogle Scholar
  8. 8.
    Buzdar AU, (2001). Endocrine therapy in the treatment of metastatic breast cancer. Semin Oncol 28: 291–304CrossRefPubMedGoogle Scholar
  9. 9.
    Chan CM, Martin LA, Johnston SR, Ali S, Dowsett M, (2002). Molecular changes associated with the acquisition of oestrogen hypersensitivity in MCF-7 breast cancer cells on long-term oestrogen deprivation J Steroid Biochem Mol Biol 81: 333–341CrossRefPubMedGoogle Scholar
  10. 10.
    Wakeling AE, Dukes M, Bowler J, (1991). A potent specific pure antiestrogen with clinical potential Cancer Res 51: 3867–3873PubMedGoogle Scholar
  11. 11.
    Fawell SE, White R, Hoare S, Sydenham M, Page M, Parker MG, (1990). Inhibition of estrogen receptor-DNA binding by the “pure” antiestrogen ICI 164,384 appears to be mediated by impaired receptor dimerization Proc Natl Acad Sci USA 87: 6883–6887PubMedCrossRefGoogle Scholar
  12. 12.
    Dauvois S, White R, Parker MG, (1993). The antiestrogen ICI 182780 disrupts estrogen receptor nucleocytoplasmic shuttling J Cell Sci 106 (Pt 4): 1377–1388PubMedGoogle Scholar
  13. 13.
    Nicholson RI, Gee JM, Manning DL, Wakeling AE, Montano MM, Katzenellenbogen BS, (1995). Responses to pure antiestrogens (ICI 164384, ICI 182780) in estrogen-sensitive and -resistant experimental and clinical breast cancer Ann N Y Acad Sci 761: 148–163PubMedCrossRefGoogle Scholar
  14. 14.
    McClelland RA, Gee JM, Francis AB, Robertson JF, Blamey RW, Wakeling AE, Nicholson RI, (1996). Short-term effects of pure anti-oestrogen ICI 182780 treatment on oestrogen receptor, epidermal growth factor receptor and transforming growth factor-alpha protein expression in human breast cancer Eur J Cancer 32A: 413–416CrossRefPubMedGoogle Scholar
  15. 15.
    Pietras RJ, Marquez DC, Chen HW, Ayala R, Ramos LB, Slamon DJ, (2003). Improved antitumor therapy with Herceptin and Faslodex for dual targeting of HER-2 and estrogen receptor signalling pathways in human breast cancers with overexpression of HER-2/neu gene Breast Cancer Res Treat 82 (Suppl 1): S12 (abstract 22)Google Scholar
  16. 16.
    Robertson JF, Osborne CK, Howell A, Jones SE, Mauriac L, Ellis M, Kleeberg UR, Come SE, Vergote I, Gertler S, Buzdar A, Webster A, Morris C, (2003). Fulvestrant versus anastrozole for the treatment of advanced breast carcinoma in postmenopausal women – a prospective combined analysis of two multicenter trials Cancer 98: 229–238CrossRefPubMedGoogle Scholar
  17. 17.
    Ingle JN, Rowland KM, Suman VJ, Mirchandani D, Bernath AM, Camoriano JK, Perez EA, (2004). Evaluation of fulvestrant in women with advanced breast cancer and progression on prior aromatase inhibitor therapy: a phase II trial of the North Central Cancer Treatment Group Breast Cancer Res Treat 88 (Suppl 1): S38 (abstract 409)Google Scholar
  18. 18.
    Perey L, Paridaens R, Nolé F, Bonnefoi H, Aebi S, Goldhirsch A, Dietrich D, Thürlimann B, for the Swiss Group for Clinical Cancer Research (SAKK): Fulvestrant (Faslodex™) as hormonal treatment in postmenopausal patients with advanced breast cancer (ABC) progressing after treatment with tamoxifen and aromatase inhibitors: update of a phase II SAKK trial. Breast Cancer Res Treat 88(Suppl 1): S236, 2004 (abstract 6048)Google Scholar
  19. 19.
    Bertelli G, Garrone O, Merlano M, (2002). Sequential use of aromatase inactivators and inhibitors in advanced breast cancer. Proc Am Soc Clin Oncol 21: 60a (abstract 238)Google Scholar
  20. 20.
    Carlini P, Michelotti A, Giannarelli D, Conte PF, Salavadori B, Landucci E, Di Cosimo S, Fabi A, Papaldo P, Cognetti F, (2002). Exemestane (EXE) is an effective 3rd line hormonal therapy for postmenopausal metastatic breast cancer (MBC) patients (pts) pretreated with 3rd generation non steroidal aromatase inhibitors (nSAI) Ann Oncol 13 (Suppl 5): 48Google Scholar
  21. 21.
    Fernie NL, Zekri JM, Leonard RCF, Coleman RE, Cameron DA, (2003). Exemestane in metastatic breast cancer: effective therapy after 3rd generation aromatase inhibitor failure. Breast Cancer Res Treat 82 (Suppl 1): S104 (abstract 435)Google Scholar
  22. 22.
    Lønning PE, Bajetta E, Murray R, Tubiana-Hulin M, Eisenberg PD, Mickiewicz E, Celio L, Pitt P, Mita M, Aaronson NK, Fowst C, Arkhipov A, di Salle E, Polli A, Massimini G, (2005). Activity of exemestane in metastatic breast cancer after failure of nonsteroidal aromatase inhibitors: a phase II trial J Clin Oncol 18: 2234–2244Google Scholar
  23. 23.
    Chen S, (1998). Aromatase and breast cancer. Front Biosci 3: d922–d933PubMedGoogle Scholar
  24. 24.
    Geisler J, Haynes B, Anker G, Dowsett M, Lønning PE, (2002). Influence of letrozole and anastrozole on total body aromatization and plasma estrogen levels in postmenopausal breast cancer patients evaluated in a randomized, cross-over study J Clin Oncol 20: 751–757CrossRefPubMedGoogle Scholar
  25. 25.
    Geisler J, Detre S, Berntsen H, Ottestad L, Lindtjorn B, Dowsett M, Einstein LP, (2001). Influence of neoadjuvant anastrozole (Arimidex) on intratumoral estrogen levels and proliferation markers in patients with locally advanced breast cancer Clin Cancer Res 7: 1230–1236PubMedGoogle Scholar
  26. 26.
    Benz CC, Scott GK, Sarup JC, Johnson RM, Tripathy D, Coronado E, Shepard HM, Osborne CK, (1993). Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu Breast Cancer Res Treat 24: 85–95CrossRefPubMedGoogle Scholar
  27. 27.
    Martin L-A, Farmer I, Johnston SRD, Ali S, Marshall C, Dowsett M, (2003). Enhanced estrogen receptor (ER)(, ERBB2, and MAPK signal transduction pathways operate during the adaptation of MCF-7 cells to long term estrogen deprivation J Biol Chem 278: 30458–30468CrossRefPubMedGoogle Scholar
  28. 28.
    Nicholson RI, Hutcheson IR, Harper ME, Knowlden JM, Barrow D, McClelland RA, Jones HE, Wakeling AE, Gee JM, (2001). Modulation of epidermal growth factor receptor in endocrine-resistant, oestrogen receptor-positive breast cancer Endocr Relat Cancer 8: 175–182CrossRefPubMedGoogle Scholar
  29. 29.
    Santen RJ, Song RX, Zhnag Z, Yue W, Kumar R, (2004). Adaptive hypersensitivity to estrogen: mechanism for sequential responses to hormonal therapy in breast cancer Clin Cancer Res 10: 337s–345sCrossRefPubMedGoogle Scholar
  30. 30.
    Shim WS, Conaway M, Masamura S, Yue W, Wang JP, Kmar R, Santen RJ, (2000). Estradiol hypersensitivity and mitogen-activated protein kinase expression in long-term estrogen deprived human breast cancer cells in vivo. Endocrinology 141: 396–405CrossRefPubMedGoogle Scholar
  31. 31.
    Masamura S, Santner SJ, Heitjan DF, Santen RJ, (1995). Estrogen deprivation causes estradiol hypersensitivity in human breast cancer cells J Clin Endocrinol Metab 80: 2918–2925CrossRefPubMedGoogle Scholar
  32. 32.
    Coutts AS Murphy LC, (1998). Elevated mitogen-activated protein kinase activity in estrogen-nonresponsive human breast cancer cells Cancer Res 58: 4071–4074PubMedGoogle Scholar
  33. 33.
    Johnston SR Dowsett M, (2003). Aromatase inhibitors for breast cancer: lessons from the laboratory Nat Rev Cancer 3: 821–831CrossRefPubMedGoogle Scholar
  34. 34.
    Campbell RA, Bhat-Nakshatri P, Patel NM, Constantinidou D, Ali S, Nakshatri H, (2001). Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor alpha: a new model for anti-estrogen resistance J Biol Chem 276: 9817–9824CrossRefPubMedGoogle Scholar
  35. 35.
    Font de Mora J Brown M, (2000). AIB1 is a conduit for kinase-mediated growth factor signaling to the estrogen receptor Mol Cell Biol 20: 5041–5047CrossRefPubMedGoogle Scholar
  36. 36.
    McClelland RA, Barrow D, Madden TA, Dutkowski CM, Pamment J, Knowlden JM, Gee JM, Nicholson RI, (2001). Enhanced epidermal growth factor receptor signaling in MCF7 breast cancer cells after long-term culture in the presence of the pure antiestrogen ICI 182,780 (Faslodex) Endocrinology 142: 2776–2788CrossRefPubMedGoogle Scholar
  37. 37.
    Pietras RJ, Arboleda J, Reese DM, Wongvipat N, Pegram MD, Ramos L, Gorman CM, Parker MG, Sliwkowski MX, Slamon DJ, (1995). HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells Oncogene 10: 2435–2446PubMedGoogle Scholar
  38. 38.
    Massarweh SA, Jiang S, Mohsin SK, DiPietro M, Wakeling AE, Osborne CK, Schiff R: Resistance to endocrine therapy in a xenograft model of HER-2 overexpressing breast cancer is accompanied by increased HER-2 but loss of IGF-1 receptor expression. Breast Cancer Res Treat 87(Suppl 1): 2003 (abstract 1007)Google Scholar
  39. 39.
    Stephen RL, Shaw LE, Larsen C, Corcoran D, Darbre PD, (2001). Insulin-like growth factor receptor levels are regulated by cell density and by long term estrogen deprivation in MCF7 human breast cancer cells J Biol Chem. 276: 40080–40086CrossRefPubMedGoogle Scholar
  40. 40.
    Robertson JF, Erikstein B, Osborne KC, Pippen J, Come SE, Parker LM, Gertler S, Harrison MP, Clarke DA, (2004). Pharmacokinetic profile of intramuscular fulvestrant in advanced breast cancer Clin Pharmacokinet 43: 529–538PubMedCrossRefGoogle Scholar
  41. 41.
    Vergote I, Robertson JFR, Kleeberg U, Burton G, Osborne CK, Mauriac L, (2003). Postmenopausal women who progress on fulvestrant (‘Faslodex’) remain sensitive to further endocrine therapy Breast Cancer Res Treat 79: 207–211CrossRefPubMedGoogle Scholar
  42. 42.
    Lønning PE, (1999). Cross-resistance to different aromatase inhibitors in breast cancer treatment Endocr Relat Cancer 6: 251–257CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Inc. 2005

Authors and Affiliations

  • Stephen R. Johnston
    • 1
    • 3
  • Lesley-Ann Martin
    • 2
  • Mitch Dowsett
    • 1
    • 2
  1. 1.Breast Unit, Department of MedicineRoyal Marsden Hospital NHS TrustLondonUK
  2. 2.Breakthrough Breast Cancer CentreInstitute for Cancer ResearchLondonUK
  3. 3.Breast Unit, Department of MedicineRoyal Marsden Hospital NHS Trust,LondonUK

Personalised recommendations