Advertisement

Breast Cancer Research and Treatment

, Volume 96, Issue 1, pp 17–39 | Cite as

cDNA microarray analysis of isogenic paclitaxel- and doxorubicin-resistant breast tumor cell lines reveals distinct drug-specific genetic signatures of resistance

  • David J. Villeneuve
  • Stacey L. Hembruff
  • Zachary Veitch
  • Melanie Cecchetto
  • William A. Dew
  • Amadeo M. ParissentiEmail author
Article

Summary

cDNA microarray analysis is a highly useful tool for the classification of tumors and for prediction of patient prognosis to specific cancers based on this classification. However, to date, there is little evidence that microarray approaches can be used to reliably predict patient response to specific chemotherapy drugs or regimens. This is likely due to an inability to differentiate between genes affecting patient prognosis and genes that play a role in response to specific drugs. Thus, it would be highly useful to identify genes whose expression correlates with tumor cell sensitivity to specific chemotherapy agents in a drug-specific manner. Using cDNA microarray analysis of wildtype MCF-7 breast tumor cells and isogenic paclitaxel-resistant (MCF-7TAX) or doxorubicin-resistant (MCF-7DOX) derivative cell lines, we have uncovered drug-specific changes in gene expression that accompany the establishment of paclitaxel or doxorubicin resistance. These changes in gene expression were confirmed by quantitative reverse transcription polymerase chain reaction and immunoblotting experiments, with a confirmation rate of approximately 91–95%. The genes identified may prove highly useful for prediction of response to paclitaxel or doxorubicin in patients with breast cancer. To our knowledge this is the first report of drug-specific genetic signatures of resistance to paclitaxel or doxorubicin, based on a comparison of gene expression between isogenic wildtype and drug-resistant tumor cell lines. Moreover, this study provides significant insight into the wide variety of mechanisms through which resistance to these agents may be acquired in breast cancer.

Keywords

doxorubicin drug resistance genetic signatures MCF-7 microarray analysis paclitaxel pathways Q-PCR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to thank Drs. Maureen Trudeau and Kathy Pritchard for their support of these studies and for stimulating discussions. This work was supported by a grant from the Ontario Cancer Research Network (02-MAY-0159) and by core support funds from Cancer Care Ontario and the Northern Cancer Research Foundation.

References

  1. 1.
    Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de RM, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein LP, Borresen-Dale AL Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874, 2001CrossRefPubMedGoogle Scholar
  2. 2.
    Santin AD, Zhan F, Bellone S, Palmieri M, Cane S, Gokden M, Roman JJ, O'Brien TJ, Tian E, Cannon MJ, Shaughnessy J, Jr. Pecorelli S Discrimination between uterine serous papillary carcinomas and ovarian serous papillary tumours by gene expression profiling Br J Cancer 90:1814–1824, 2004CrossRefPubMedGoogle Scholar
  3. 3.
    Kohlmann A, Schoch C, Schnittger S, Dugas M, Hiddemann W, Kern W, Haferlach T Pediatric acute lymphoblastic leukemia (ALL) gene expression signatures classify an independent cohort of adult ALL patients Leukemia 18:63–71, 2004CrossRefPubMedGoogle Scholar
  4. 4.
    van't Veer LJ, Dai H., van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der KK, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH Gene expression profiling predicts clinical outcome of breast cancer Nature 415:530–536, 2002CrossRefPubMedGoogle Scholar
  5. 5.
    van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L., van, d V, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R: A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347: 1999–2009, 2002Google Scholar
  6. 6.
    Nutt CL, Mani DR, Betensky RA, Tamayo P, Cairncross JG, Ladd C, Pohl U, Hartmann C, McLaughlin ME, Batchelor TT, Black PM, von Deimling A, Pomeroy SL, Golub TR, Louis DN Gene expression-based classification of malignant gliomas correlates better with survival than histological classification Cancer Res 63:1602–1607, 2003PubMedGoogle Scholar
  7. 7.
    Gordon GJ, Jensen RV, Hsiao LL, Gullans SR, Blumenstock JE, Richards WG, Jaklitsch MT, Sugarbaker DJ, Bueno R Using gene expression ratios to predict outcome among patients with mesothelioma J Natl Cancer Inst 95:598–605, 2003PubMedCrossRefGoogle Scholar
  8. 8.
    Nevins JR, Huang ES, Dressman H, Pittman J, Huang AT, West M Towards integrated clinico-genomic models for personalized medicine: combining gene expression signatures and clinical factors in breast cancer outcomes prediction Hum Mol Genet 12(2):R153–R157, 2003CrossRefPubMedGoogle Scholar
  9. 9.
    Yu K, Lee CH, Tan PH, Hong GS, Wee SB, Wong CY, Tan P A molecular signature of the Nottingham prognostic index in breast cancer Cancer Res 64:2962–2968, 2004CrossRefPubMedGoogle Scholar
  10. 10.
    Chang JC, Wooten EC, Tsimelzon A, Hilsenbeck SG, Gutierrez MC, Elledge R, Mohsin S, Osborne CK, Chamness GC, Allred DC, O'Connell P Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer Lancet 362:362–369, 2003CrossRefPubMedGoogle Scholar
  11. 11.
    Ayers M, Symmans WF, Stec J, Damokosh AI, Clark E, Hess K, Lecocke M, Metivier J, Booser D, Ibrahim N, Valero V, Royce M, Arun B, Whitman G, Ross J, Sneige N, Hortobagyi GN, Pusztai L Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in breast cancer J Clin Oncol 22:2284–2293, 2004CrossRefPubMedGoogle Scholar
  12. 12.
    Iwao-Koizumi K, Matoba R, Ueno N, Kim SJ, Ando A, Miyoshi Y, Maeda E, Noguchi S, Kato K Prediction of docetaxel response in human breast cancer by gene expression profiling J Clin Oncol 23:422–431, 2005CrossRefPubMedGoogle Scholar
  13. 13.
    Okutsu J, Tsunoda T, Kaneta Y, Katagiri T, Kitahara O, Zembutsu H, Yanagawa R, Miyawaki S, Kuriyama K, Kubota N, Kimura Y, Kubo K, Yagasaki F, Higa T, Taguchi H, Tobita T, Akiyama H, Takeshita A, Wang YH, Motoji T, Ohno R, Nakamura Y Prediction of chemosensitivity for patients with acute myeloid leukemia, according to expression levels of 28 genes selected by genome-wide complementary DNA microarray analysis Mol Cancer Ther 1:1035–1042, 2002PubMedGoogle Scholar
  14. 14.
    Zijlstra JG, de Jong S, de Vries EG, Mulder NH Topoisomerases, new targets in cancer chemotherapy Med Oncol Tumor Pharmacother 7:11–18, 1990PubMedGoogle Scholar
  15. 15.
    Capranico G, De IP, Penco S, Tinelli S, Zunino F Role of DNA breakage in cytotoxicity of doxorubicin, 9-deoxydoxorubicin, and 4-demethyl-6-deoxydoxorubicin in murine leukemia P388 cells Cancer Res 49:2022–2027, 1989PubMedGoogle Scholar
  16. 16.
    Wu XX, Mizutani Y, Kakehi Y, Yoshida O, Ogawa O Enhancement of Fas-mediated apoptosis in renal cell carcinoma cells by adriamycin Cancer Res 60:2912–2918, 2000PubMedGoogle Scholar
  17. 17.
    Yamaoka M, Yamaguchi S, Suzuki T, Okuyama M, Nitobe J, Nakamura N, Mitsui Y, Tomoike H Apoptosis in rat cardiac myocytes induced by Fas ligand: priming for Fas-mediated apoptosis with doxorubicin J Mol Cell Cardiol 32:881–889, 2000CrossRefPubMedGoogle Scholar
  18. 18.
    Chazard M, Pellae-Cosset B, Garet F, Soares JA, Lucidi B, Lavail Y, Lenaz L [Taxol (paclitaxel), first molecule of a new class of cytotoxic agents: taxanes] Bull Cancer 81:173–181, 1994PubMedGoogle Scholar
  19. 19.
    Arioka H, Saijo N Microtubules and antineoplastic drugs Gan To Kagaku Ryoho 21:583–590, 1994PubMedGoogle Scholar
  20. 20.
    Distefano M, Scambia G, Ferlini C, Gaggini C, De Vincenzo R, Riva A, Bombardelli E, Ojima I, Fattorossi A, Panici PB, Mancuso S Anti-proliferative activity of a new class of taxanes (14beta-hydroxy-10-deacetylbaccatin III derivatives) on multidrug-resistance-positive human cancer cells Int J Cancer 72:844–850, 1997CrossRefPubMedGoogle Scholar
  21. 21.
    Moos PJ, Fitzpatrick FA Taxane-mediated gene induction is independent of microtubule stabilization: induction of transcription regulators and enzymes that modulate inflammation and apoptosis Proc Natl Acad Sci USA 95:3896–3901, 1998CrossRefPubMedGoogle Scholar
  22. 22.
    Berg CD, Swain SM Results of concomitantly administered chemoradiation for locally advanced noninflammatory breast cancer Semin Radiat Oncol 4:226–235, 1994PubMedGoogle Scholar
  23. 23.
    Ueno NT, Buzdar AU, Singletary SE, Ames FC, McNeese MD, Holmes FA, Theriault RL, Strom EA, Wasaff BJ, Asmar L, Frye D, Hortobagyi GN Combined-modality treatment of inflammatory breast carcinoma: twenty years of experience at M.D. Anderson Cancer Center Cancer Chemother Pharmacol 40:321–329, 1997CrossRefPubMedGoogle Scholar
  24. 24.
    Crown J., Nonanthracycline containing docetaxel-based combinations in metastatic breast cancer Oncologist 6(3):17–21, 2001CrossRefPubMedGoogle Scholar
  25. 25.
    Guo B, Villeneuve DJ, Hembruff SL, Kirwan AF, Blais DE, Bonin M, Parissenti AM, Cross-resistance studies of isogenic drug-resistant breast tumor cell lines support recent clinical evidence suggesting that sensitivity to paclitaxel may be strongly compromised by prior doxorubicin exposure Breast Cancer Res Treat 85:31–51, 2004CrossRefPubMedGoogle Scholar
  26. 26.
    Chadderton A, Villeneuve DJ, Gluck S, Kirwan-rhude AF, Gannon BR, Blais DE, Parissenti AM, Role of specific apoptotic pathways in the restoration of paclitaxel- induced apoptosis by valspodar in doxorubicin-resistant MCF-7 breast cancer cells Breast Cancer Res Treat 59:231–244, 2000CrossRefPubMedGoogle Scholar
  27. 27.
    Keating A, Toor P: Human Long Term Bone Marrow Culture. In: Poclard JM (ed) p. 331. Wiley-Liss, New York, 1990Google Scholar
  28. 28.
    Villeneuve DJ, Parissenti AM, The use of DNA microarrays to investigate the pharmacogenomics of drug response in living systems Curr Top Med Chem 4:1329–1345, 2004CrossRefPubMedGoogle Scholar
  29. 29.
    Dubois CM, Laprise MH, Blanchette F, Gentry LE, Leduc R, Processing of transforming growth factor beta 1 precursor by human furin convertase J Biol Chem 270:10618–10624, 1995CrossRefPubMedGoogle Scholar
  30. 30.
    Hendy GN, Bennett HP, Gibbs BF, Lazure C, Day R, Seidah NG, Proparathyroid hormone is preferentially cleaved to parathyroid hormone by the prohormone convertase furin. A mass spectrometric study J Biol Chem 270:9517–9525, 1995CrossRefPubMedGoogle Scholar
  31. 31.
    Khatib AM, Siegfried G, Prat A, Luis J, Chretien M, Metrakos P, Seidah NG, Inhibition of proprotein convertases is associated with loss of growth and tumorigenicity of HT-29 human colon carcinoma cells: importance of insulin-like growth factor-1 (IGF-1) receptor processing in IGF-1-mediated functions J Biol Chem 276:30686–30693, 2001CrossRefPubMedGoogle Scholar
  32. 32.
    Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ, Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death Nature 348:334–336, 1990CrossRefPubMedGoogle Scholar
  33. 33.
    Jacobson MD, Burne JF, King MP, Miyashita T, Reed JC, Raff MC, Bcl-2 blocks apoptosis in cells lacking mitochondrial DNA Nature 361:365–369, 1993CrossRefPubMedGoogle Scholar
  34. 34.
    Kim SY, Berger D, Yim SO, Sacks PG, Tainsky MA, Coordinate control of growth and cytokeratin 13 expression by retinoic acid Mol Carcinog 16:6–11, 1996CrossRefPubMedGoogle Scholar
  35. 35.
    Hamakawa H, Bao Y, Takarada M, Fukuzumi M, Tanioka H, Cytokeratin expression in squamous cell carcinoma of the lung and oral cavity: an immunohistochemical study with possible clinical relevance Oral Surg Oral Med Oral Pathol Oral Radiol Endod 85:438–443, 1998CrossRefPubMedGoogle Scholar
  36. 36.
    Rosenberger G, Grusch M, Fuhrmann G, Leuhuber K, Polgar D, Krupitza G, Transferrin ensures survival of ovarian carcinoma cells subjected to deferoxamine, TNFα, FasL, TRAIL or MYC–Activation Sci World J 1:93, 2001Google Scholar
  37. 37.
    Fonseca AM, Pereira CF, Porto G, Arosa FA, Red blood cells upregulate cytoprotective proteins and the labile iron pool in dividing human T cells despite a reduction in oxidative stress Free Radic Biol Med 35:1404–1416, 2003CrossRefPubMedGoogle Scholar
  38. 38.
    Albuquerque KV, Price MR, Badley RA, Jonrup I, Pearson D, Blamey RW, Robertson JF, Pre-treatment serum levels of tumour markers in metastatic breast cancer: a prospective assessment of their role in predicting response to therapy and survival Eur J Surg Oncol 21:504–509, 1995CrossRefPubMedGoogle Scholar
  39. 39.
    Yang DC, Wang F, Elliott RL, Head JF, Expression of transferrin receptor and ferritin H-chain mRNA are associated with clinical and histopathological prognostic indicators in breast cancer Anticancer Res 21:541–549, 2001PubMedGoogle Scholar
  40. 40.
    Fan W, Christensen M, Eichler E, Zhang X, Lennon G, Cloning, sequencing, gene organization, and localization of the human ribosomal protein RPL23A gene Genomics 46:234–239, 1997CrossRefPubMedGoogle Scholar
  41. 41.
    Pool MR, Stumm J, Fulga TA, Sinning I, Dobberstein B, Distinct modes of signal recognition particle interaction with the ribosome Science 297:1345–1348, 2002CrossRefPubMedGoogle Scholar
  42. 42.
    Lai CF, Feng X, Nishimura R, Teitelbaum SL, Avioli LV, Ross FP, Cheng SL, Transforming growth factor-beta up-regulates the beta 5 integrin subunit expression via Sp1 and Smad signaling J Biol Chem 275:36400–36406, 2000CrossRefPubMedGoogle Scholar
  43. 43.
    Liang Y, Meleady P, Cleary I, McDonnell S, Connolly L, Clynes M, Selection with melphalan or paclitaxel (Taxol) yields variants with different patterns of multidrug resistance, integrin expression and in vitro invasiveness Eur J Cancer 37:1041–1052, 2001CrossRefPubMedGoogle Scholar
  44. 44.
    Morazzani M, de Carvalho DD, Kovacic H, Smida-Rezgui S, Briand C, Penel C, Monolayer versus aggregate balance in survival process for EGF-induced apoptosis in A431 carcinoma cells: implication of ROS-P38 MAPK-integrin alpha2beta1 pathway Int J Cancer 110:788–799, 2004CrossRefPubMedGoogle Scholar
  45. 45.
    Lin MT, Chang CC, Chen ST, Chang HL, Su JL, Chau YP, Kuo ML, Cyr61 expression confers resistance to apoptosis in breast cancer MCF-7 cells by a mechanism of NF-kappaB-dependent XIAP up-regulation J Biol Chem 279:24015–24023, 2004CrossRefPubMedGoogle Scholar
  46. 46.
    Lindberg FP, Lublin DM, Telen MJ, Veile RA, Miller YE, Donis-Keller H, Brown EJ, Rh-related antigen CD47 is the signal-transducer integrin-associated protein J Biol Chem 269:1567–1570, 1994PubMedGoogle Scholar
  47. 47.
    Smith ML, Chen IT, Zhan Q, Bae I, Chen CY, Gilmer TM, Kastan MB, O'Connor PM, Fornace AJ, Jr., Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigenScience 266:1376–1380, 1994PubMedGoogle Scholar
  48. 48.
    Bell AC, West AG, Felsenfeld G, The protein CTCF is required for the enhancer blocking activity of vertebrate insulators Cell 98:387–396, 1999CrossRefPubMedGoogle Scholar
  49. 49.
    Bell AC, Felsenfeld G, Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene Nature 405:482–485, 2000CrossRefPubMedGoogle Scholar
  50. 50.
    Murakami A, Yajima T, Sakuma H, McLaren MJ, Inana G, X-arrestin: a new retinal arrestin mapping to the X chromosome FEBS Lett 334:203–209, 1993CrossRefPubMedGoogle Scholar
  51. 51.
    Sakuma H, Murakami A, Fujimaki T, Inana G, Isolation and characterization of the human X-arrestin gene Gene 224:87–95, 1998CrossRefPubMedGoogle Scholar
  52. 52.
    Revankar CM, Vines CM, Cimino DF, Prossnitz ER, Arrestins Block G Protein-coupled Receptor-mediated Apoptosis J Biol Chem 279:24578–24584, 2004CrossRefPubMedGoogle Scholar
  53. 53.
    Maric M, Arunachalam B, Phan UT, Dong C, Garrett WS, Cannon KS, Alfonso C, Karlsson L, Flavell RA, Cresswell P, Defective antigen processing in GILT-free mice Science 294:1361–1365, 2001CrossRefPubMedGoogle Scholar
  54. 54.
    Arunachalam B, Phan UT, Geuze HJ, Cresswell P, Enzymatic reduction of disulfide bonds in lysosomes: characterization of a gamma-interferon-inducible lysosomal thiol reductase (GILT) Proc Natl Acad Sci USA 97:745–750, 2000CrossRefPubMedGoogle Scholar
  55. 55.
    Fu M, Zhu X, Zhang J, Liang J, Lin Y, Zhao L, Ehrengruber MU, Chen YE Egr-1 target genes in human endothelial cells identified by microarray analysis Gene 315:33–41, 2003CrossRefPubMedGoogle Scholar
  56. 56.
    Juliano RL, Ling V, A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants Biochim Biophys Acta 455:152–162, 1976PubMedGoogle Scholar
  57. 57.
    Kartner N, Shales M, Riordan JR, Ling V, Daunorubicin-resistant Chinese hamster ovary cells expressing multidrug resistance and a cell-surface P-glycoprotein Cancer Res 43:4413–4419, 1983PubMedGoogle Scholar
  58. 58.
    Kartner N, Riordan JR, Ling V, Cell surface P-glycoprotein associated with multidrug resistance in mammalian cell lines Science 221:1285–1288, 1983PubMedGoogle Scholar
  59. 59.
    Emery P, Durand B, Mach B, Reith W, RFX proteins, a novel family of DNA binding proteins conserved in the eukaryotic kingdom Nucl Acids Res 24:803–807, 1996CrossRefPubMedGoogle Scholar
  60. 60.
    Villard J, Reith W, Barras E, Gos A, Morris MA, Antonarakis SE, Van den Elsen PJ, Mach B, Analysis of mutations and chromosomal localisation of the gene encoding RFX5, a novel transcription factor affected in major histocompatibility complex class II deficiency Hum Mutat 10:430–435, 1997CrossRefPubMedGoogle Scholar
  61. 61.
    Worwood M, Brook JD, Cragg SJ, Hellkuhl B, Jones BM, Perera P, Roberts SH, Shaw DJ, Assignment of human ferritin genes to chromosomes 11 and 19q13.3–19qter Hum Genet 69:371–374, 1985CrossRefPubMedGoogle Scholar
  62. 62.
    Rich BE, Steitz JA, Human acidic ribosomal phosphoproteins P0, P1, and P2: analysis of cDNA clones, in vitro synthesis, and assembly. Mol Cell Biol 7:4065–4074, 1987PubMedGoogle Scholar
  63. 63.
    Tchorzewski M, Krokowski D, Rzeski W, Issinger OG, Grankowski N, The subcellular distribution of the human ribosomal ȁ8stalkȁ9 components: P1, P2 and P0 proteins Int J Biochem Cell Biol 35:203–211, 2003CrossRefPubMedGoogle Scholar
  64. 64.
    Pearson WR, Vorachek WR, Xu SJ, Berger R, Hart I, Vannais D, Patterson D, Identification of class-mu glutathione transferase genes GSTM1-GSTM5 on human chromosome 1p13 Am J Hum Genet 53:220–233, 1993PubMedGoogle Scholar
  65. 65.
    Wang K, Ramji S, Bhathena A, Lee C, Riddick DS, Glutathione S-transferases in wild-type and doxorubicin-resistant MCF-7 human breast cancer cell lines Xenobiotica 29:155–170, 1999CrossRefPubMedGoogle Scholar
  66. 66.
    Park JS, Yamamoto W, Sekikawa T, Matsukawa M, Okamoto R, Sasaki M, Ukon K, Tanimoto K, Kumazaki T, Nishiyama M, Cellular sensitivity determinants to docetaxel in human gastrointestinal cancers Int J Oncol 20:333–338, 2002PubMedGoogle Scholar
  67. 67.
    Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verastegui E, Zlotnik A, Involvement of chemokine receptors in breast cancer metastasis Nature 410:50–56, 2001CrossRefPubMedGoogle Scholar
  68. 68.
    Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley EJ, Krek W., Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL Nature 425:307–311, 2003CrossRefPubMedGoogle Scholar
  69. 69.
    Kim CH, Kunkel EJ, Boisvert J, Johnston B, Campbell JJ, Genovese MC, Greenberg HB, Butcher EC, Bonzo/CXCR6 expression defines type 1-polarized T-cell subsets with extralymphoid tissue homing potential J Clin Invest 107:595–601, 2001PubMedGoogle Scholar
  70. 70.
    Qin KN, New MI, Cheng KC, Molecular cloning of multiple cDNAs encoding human enzymes structurally related to 3 alpha-hydroxysteroid dehydrogenase J Steroid Biochem Mol Biol 46:673–679, 1993CrossRefPubMedGoogle Scholar
  71. 71.
    Burczynski ME, Lin HK, Penning TM, Isoform-specific induction of a human aldo-keto reductase by polycyclic aromatic hydrocarbons (PAHs), electrophiles, and oxidative stress: implications for the alternative pathway of PAH activation catalyzed by human dihydrodiol dehydrogenase Cancer Res 59:607–614, 1999PubMedGoogle Scholar
  72. 72.
    Callahan HL, Beverley SM, A member of the aldoketo reductase family confers methotrexate resistance in Leishmania J Biol Chem 267:24165–24168, 1992PubMedGoogle Scholar
  73. 73.
    Karin M, Richards RI, Human metallothionein genes–primary structure of the metallothionein-II gene and a related processed gene Nature 299:797–802, 1982CrossRefPubMedGoogle Scholar
  74. 74.
    Schmidt CJ, Hamer DH, McBride OW, Chromosomal location of human metallothionein genes: implications for Menkes' disease Science 224:1104–1106, 1984PubMedGoogle Scholar
  75. 75.
    Cui Y, Wang J, Zhang X, Lang R, Bi M, Guo L, Lu SH, ECRG2, a novel candidate of tumor suppressor gene in the esophageal carcinoma, interacts directly with metallothionein 2A, links to apoptosis Biochem Biophys Res Commun 302:904–915, 2003CrossRefPubMedGoogle Scholar
  76. 76.
    Becker T, Gerke V, Kube E, Weber K, S100P, a novel Ca(2+)-binding protein from human placenta. cDNA cloning, recombinant protein expression and Ca2+ binding properties Eur J Biochem 207:541–547, 1992CrossRefPubMedGoogle Scholar
  77. 77.
    Jin G, Wang S, Hu X, Jing Z, Chen J, Ying K, Xie Y, Mao Y, Characterization of the tissue-specific expression of the s100P gene whichencodes an EF-hand Ca2+-binding protein Mol Biol Rep 30:243–248, 2003CrossRefPubMedGoogle Scholar
  78. 78.
    Kusumegi T, Tanaka J, Kawano M, Yonemoto J, Tohyama C, Sone H., BMP7/ActRIIB regulates estrogen-dependent apoptosis: new biomarkers for environmental estrogens J Biochem Mol Toxicol 18:1–11, 2004CrossRefPubMedGoogle Scholar
  79. 79.
    Baade RT, Utne HR, Brenne AT, Hjorth-Hansen H, Waage A, Hjertner O, Sundan A, Borset M, Bone morphogenetic protein-5, -6 and -7 inhibit growth and induce apoptosis in human myeloma cells Oncogene 23:3024–3032, 2004CrossRefPubMedGoogle Scholar
  80. 80.
    Krisans SK, Ericsson J, Edwards PA, Keller GA, Farnesyl-diphosphate synthase is localized in peroxisomes J Biol Chem 269:14165–14169, 1994PubMedGoogle Scholar
  81. 81.
    Pandit J, Danley DE, Schulte GK, Mazzalupo S, Pauly TA, Hayward CM, Hamanaka ES, Thompson JF, Harwood HJ, Jr, Crystal structure of human squalene synthase. A key enzyme in cholesterol biosynthesis J Biol Chem 275:30610–30617, 2000CrossRefPubMedGoogle Scholar
  82. 82.
    Ribieras S, Tomasetto C, Rio MC, The pS2/TFF1 trefoil factor, from basic research to clinical applications Biochim Biophys Acta 1378: F61–F77, 1998PubMedGoogle Scholar
  83. 83.
    Roberts M, Wallace J, Jeltsch JM, Berry M, The 5′ flanking region of the human pS2 gene mediates its transcriptional activation by estrogen in MCF-7 cells Biochem Biophys Res Commun 151:306–313, 1988PubMedCrossRefGoogle Scholar
  84. 84.
    Morrison BW, Moorman JR, Kowdley GC, Kobayashi YM, Jones LR, Leder P, Mat-8, a novel phospholemman-like protein expressed in human breast tumors, induces a chloride conductance in Xenopus oocytes J Biol Chem 270:2176–2182, 1995CrossRefPubMedGoogle Scholar
  85. 85.
    Sweadner KJ, Rael E, The FXYD gene family of small ion transport regulators or channels: cDNA sequence, protein signature sequence, and expression Genomics 68:41–56, 2000CrossRefPubMedGoogle Scholar
  86. 86.
    Lublin DM, Liszewski MK, Post TW, Arce MA, Le Beau MM, Rebentisch MB, Lemons LS, Seya T, Atkinson JP, Molecular cloning and chromosomal localization of human membrane cofactor protein (MCP). Evidence for inclusion in the multigene family of complement-regulatory proteins J Exp Med 168:181–194, 1988CrossRefPubMedGoogle Scholar
  87. 87.
    Bomstein Y, Fishelson Z Enhanced sensitivity of P-glycoprotein-positive multidrug resistant tumor cells to complement-mediated lysis Eur J Immunol 27:2204–2211, 1997PubMedGoogle Scholar
  88. 88.
    Glenney JR, Jr. Soppet D, Sequence and expression of caveolin, a protein component of caveolae plasma membrane domains phosphorylated on tyrosine in Rous sarcoma virus-transformed fibroblasts Proc Natl Acad Sci USA 89:10517–10521, 1992PubMedGoogle Scholar
  89. 89.
    Fiucci G, Ravid D, Reich R, Liscovitch M, Caveolin-1 inhibits anchorage-independent growth, anoikis and invasiveness in MCF-7 human breast cancer cells Oncogene 21:2365–2375, 2002CrossRefPubMedGoogle Scholar
  90. 90.
    Engelman JA, Lee RJ, Karnezis A, Bearss DJ, Webster M, Siegel P, Muller WJ, Windle JJ, Pestell RG, Lisanti MP, Reciprocal regulation of neu tyrosine kinase activity and caveolin-1 protein expression in vitro and in vivo. Implications for human breast cancer J Biol Chem 273:20448–20455, 1998CrossRefPubMedGoogle Scholar
  91. 91.
    Sagara Y, Mimori K, Yoshinaga K, Tanaka F, Nishida K, Ohno S, Inoue H, Mori M, Clinical significance of Caveolin-1, Caveolin-2 and HER2/neu mRNA expression in human breast cancer Br J Cancer 91:959–965, 2004PubMedGoogle Scholar
  92. 92.
    Couet J, Sargiacomo M, Lisanti MP, Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities J Biol Chem 272:30429–30438, 1997CrossRefPubMedGoogle Scholar
  93. 93.
    Gurel V, Sens DA, Somji S, Garrett SH, Nath J, Sens MA, Stable transfection and overexpression of metallothionein isoform 3 inhibits the growth of MCF-7 and Hs578T cells but not that of T-47D or MDA-MB-231 cells Breast Cancer Res Treat 80:181–191, 2003CrossRefPubMedGoogle Scholar
  94. 94.
    Miller KG, Sollner-Webb B., Transcription of mouse rRNA genes by RNA polymerase I: in vitro and in vivo initiation and processing sites Cell 27:165–174, 1981CrossRefPubMedGoogle Scholar
  95. 95.
    Beck WT, Danks MK, Mechanisms of resistance to drugs that inhibit DNA topoisomerases Semin Cancer Biol 2:235–244, 1991PubMedGoogle Scholar
  96. 96.
    Zheng X, Chou PM, Mirkin BL, Rebbaa A, Senescence-initiated reversal of drug resistance: specific role of cathepsin L Cancer Res 64:1773–1780, 2004CrossRefPubMedGoogle Scholar
  97. 97.
    Chauhan SS, Liang XJ, Su AW, Pai-Panandiker A, Shen DW, Hanover JA, Gottesman MM, Reduced endocytosis and altered lysosome function in cisplatin-resistant cell lines Br J Cancer 88:1327–1334, 2003CrossRefPubMedGoogle Scholar
  98. 98.
    Devarajan E, Chen J, Multani AS, Pathak S, Sahin AA, Mehta K, Human breast cancer MCF-7 cell line contains inherently drug-resistant subclones with distinct genotypic and phenotypic features Int J Oncol 20:913–920, 2002PubMedGoogle Scholar
  99. 99.
    Hembruff SL, Villeneve DJ, Parissenti AM, The optimization of quantitative reverse transcription PCR for verification of cDNA microarray data Anal Biochem 345:237–249, 2005CrossRefPubMedGoogle Scholar
  100. 100.
    Tewari M, Yu M, Ross B, Dean C, Giordano A, Rubin R, AAC-11, a novel cDNA that inhibits apoptosis after growth factor withdrawal Cancer Res 57:4063–4069, 1997PubMedGoogle Scholar
  101. 101.
    Van den Berghe L, Laurell H, Huez I, Zanibellato C, Prats H, Bugler B, FIF [fibroblast growth factor-2 (FGF-2)-interacting-factor], a nuclear putatively antiapoptotic factor, interacts specifically with FGF-2 Mol Endocrinol 14:1709–1724, 2000CrossRefPubMedGoogle Scholar
  102. 102.
    Bergstrom TF, Josefsson A, Erlich HA, Gyllensten U, Recent origin of HLA-DRB1 alleles and implications for human evolution Nat Genet 18:237–242, 1998CrossRefPubMedGoogle Scholar
  103. 103.
    Muntasell A, Carrascal M, Serradell L, Veelen PP, Verreck F, Koning F, Raposo G, Abian J, Jaraquemada D, HLA-DR4 molecules in neuroendocrine epithelial cells associate to a heterogeneous repertoire of cytoplasmic and surface self peptides J Immunol 169:5052–5060, 2002PubMedGoogle Scholar
  104. 104.
    Nong Y, Kandil O, Tobin EH, Rose RM, Remold HG, The HIV core protein p24 inhibits interferon-gamma-induced increase of HLA-DR, cytochrome b heavy chain mRNA levels in the human monocyte-like cell line THP1 Cell Immunol 132:10–16, 1991CrossRefPubMedGoogle Scholar
  105. 105.
    Dorak MT, Folayan GO, Niwas S, van Leeuwen DJ, Yee LJ, Tang J, Kaslow RA, C–C chemokine receptor 2 and C–C chemokine receptor 5 genotypes in patients treated for chronic hepatitis C virus infection Immunol Res 26:167–175, 2002CrossRefPubMedGoogle Scholar
  106. 106.
    Riordan JR, Deuchars K, Kartner N, Alon N, Trent J, Ling V, Amplification of P-glycoprotein genes in multidrug-resistant mammalian cell lines Nature 316:817–819, 1985CrossRefPubMedGoogle Scholar
  107. 107.
    Ino T, Yasui H, Hirano M, Kurosawa Y, Identification of a member of the TIS11 early response gene family at the insertion point of a DNA fragment containing a gene for the T-cell receptor beta chain in an acute T-cell leukemia Oncogene 11:2705–2710, 1995PubMedGoogle Scholar
  108. 108.
    Nie XF, Maclean KN, Kumar V, McKay IA, Bustin SA, ERF-2, the human homologue of the murine Tis11d early response gene Gene 152:285–286, 1995CrossRefPubMedGoogle Scholar
  109. 109.
    Sollner T, Griffiths G, Pfaller R, Pfanner N, Neupert W, MOM19, an import receptor for mitochondrial precursor proteins Cell 59:1061–1070, 1989CrossRefPubMedGoogle Scholar
  110. 110.
    Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD, Sallan SE, Lander ES, Golub TR, Korsmeyer SJ, MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia Nat Genet 30:41–47, 2002CrossRefPubMedGoogle Scholar
  111. 111.
    Yokoyama A, Kitabayashi I, Ayton PM, Cleary ML, Ohki M, Leukemia proto-oncoprotein MLL is proteolytically processed into 2 fragments with opposite transcriptional properties Blood 100:3710–3718, 2002CrossRefPubMedGoogle Scholar
  112. 112.
    Domer PH, Fakharzadeh SS, Chen CS, Jockel J, Johansen L, Silverman GA, Kersey JH, Korsmeyer SJ, Acute mixed-lineage leukemia t(4;11)(q21;q23) generates an MLL-AF4 fusion product Proc Natl Acad Sci USA 90:7884–7888, 1993PubMedGoogle Scholar
  113. 113.
    McCabe NR, Burnett RC, Gill HJ, Thirman MJ, Mbangkollo D, Kipiniak M, van Melle E, Ziemin-van der Poel S, Rowley JD, Diaz MO, Cloning of cDNAs of the MLL gene that detect DNA rearrangements and altered RNA transcripts in human leukemic cells with 11q23 translocations Proc Natl Acad Sci USA 89:11794–11798, 1992PubMedGoogle Scholar
  114. 114.
    Miyoshi J, Higashi T, Mukai H, Ohuchi T, Kakunaga T, Structure and transforming potential of the human cot oncogene encoding a putative protein kinase Mol Cell Biol 11:4088–4096, 1991PubMedGoogle Scholar
  115. 115.
    Aoki M, Hamada F, Sugimoto T, Sumida S, Akiyama T, Toyoshima K, The human cot proto-oncogene encodes two protein serine/threonine kinases with different transforming activities by alternative initiation of translation J Biol Chem 268:22723–22732, 1993PubMedGoogle Scholar
  116. 116.
    Todd JA, Bell JI, McDevitt HO, HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus Nature 329:599–604, 1987CrossRefPubMedGoogle Scholar
  117. 117.
    Todd JA, Genetic control of autoimmunity in type 1 diabetes Immunol Today 11:122–129, 1990CrossRefPubMedGoogle Scholar
  118. 118.
    Tafani M, Schneider TG, Pastorino JG, Farber JL, Cytochrome c-dependent activation of caspase-3 by tumor necrosis factor requires induction of the mitochondrial permeability transition Am J Pathol 156:2111–2121, 2000PubMedGoogle Scholar
  119. 119.
    Tafani M, Minchenko DA, Serroni A, Farber JL, Induction of the mitochondrial permeability transition mediates the killing of HeLa cells by staurosporine Cancer Res 61:2459–2466, 2001PubMedGoogle Scholar
  120. 120.
    Jiang XC, Masucci-Magoulas L, Mar J, Lin M, Walsh A, Breslow JL, Tall A, Down-regulation of mRNA for the low density lipoprotein receptor in transgenic mice containing the gene for human cholesteryl ester transfer protein. Mechanism to explain accumulation of lipoprotein B particles J Biol Chem 268:27406–27412, 1993PubMedGoogle Scholar
  121. 121.
    Kasai K, Akagawa K, Roles of the cytoplasmic and transmembrane domains of syntaxins in intracellular localization and trafficking J Cell Sci 114:3115–3124, 2001PubMedGoogle Scholar
  122. 122.
    Horwitz J, The function of alpha-crystallin in vision Semin Cell Dev Biol 11:53–60, 2000CrossRefPubMedGoogle Scholar
  123. 123.
    Mehlen P, Schulze-Osthoff K, Arrigo AP: Small stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1- and staurosporine-induced cell death. J Biol Chem 271: 16510–16514, 1996Google Scholar
  124. 124.
    Mehlen P, Preville X, Chareyron P, Briolay J, Klemenz R, Arrigo AP, Constitutive expression of human hsp27, Drosophila hsp27, or human alpha B-crystallin confers resistance to TNF- and oxidative stress-induced cytotoxicity in stably transfected murine L929 fibroblasts J Immunol 154:363–374, 1995PubMedGoogle Scholar
  125. 125.
    Mehlen P, Kretz-Remy C, Preville X, Arrigo AP, Human hsp27, Drosophila hsp27 and human alphaB-crystallin expression- mediated increase in glutathione is essential for the protective activity of these proteins against TNFalpha-induced cell death EMBO J 15:2695–2706, 1996PubMedGoogle Scholar
  126. 126.
    Andley UP, Song Z, Wawrousek EF, Brady JP, Bassnett S, Fleming TP, Lens epithelial cells derived from alphaB-crystallin knockout mice demonstrate hyperproliferation and genomic instability FASEB J 15:221–229, 2001CrossRefPubMedGoogle Scholar
  127. 127.
    Yoshii T, Inohara H, Takenaka Y, Honjo Y, Akahani S, Nomura T, Raz A, Kubo T, Galectin-3 maintains the transformed phenotype of thyroid papillary carcinoma cells Int J Oncol 18:787–792, 2001PubMedGoogle Scholar
  128. 128.
    Matarrese P, Fusco O, Tinari N, Natoli C, Liu FT, Semeraro ML, Malorni W, Iacobelli S, Galectin-3 overexpression protects from apoptosis by improving cell adhesion properties Int J Cancer 85:545–554, 2000CrossRefPubMedGoogle Scholar
  129. 129.
    Moon BK, Lee YJ, Battle P, Jessup JM, Raz A, Kim HR, Galectin-3 protects human breast carcinoma cells against nitric oxide-induced apoptosis: implication of galectin-3 function during metastasis Am J Pathol 159:1055–1060, 2001PubMedGoogle Scholar
  130. 130.
    Akahani S, Nangia-Makker P, Inohara H, Kim HR, Raz A, Galectin-3: a novel antiapoptotic molecule with a functional BH1 (NWGR) domain of Bcl-2 family Cancer Res 57:5272–5276, 1997PubMedGoogle Scholar
  131. 131.
    Schedin P, Mitrenga T, Kaeck M, Estrous cycle regulation of mammary epithelial cell proliferation, differentiation, and death in the Sprague-Dawley rat: a model for investigating the role of estrous cycling in mammary carcinogenesis J Mammary Gland Biol Neoplasia 5:211–225, 2000CrossRefPubMedGoogle Scholar
  132. 132.
    Miyake H, Hara S, Zellweger T, Kamidono S, Gleave ME, Hara I, Acquisition of resistance to Fas-mediated apoptosis by overexpression of clusterin in human renal-cell carcinoma cells Mol Urol 5:105–111, 2001CrossRefPubMedGoogle Scholar
  133. 133.
    Casero RA, Jr., Celano P, Ervin SJ, Applegren NB, Wiest L, Pegg AE, Isolation and characterization of a cDNA clone that codes for human spermidine/spermine N1-acetyltransferase J Biol Chem 266:810–814, 1991PubMedGoogle Scholar
  134. 134.
    Xiao L, Casero RA, Jr, Differential transcription of the human spermidine/spermine N1-acetyltransferase (SSAT) gene in human lung carcinoma cells. Biochem J 313(Pt 2): 691–696, 1996PubMedGoogle Scholar
  135. 135.
    Tomitori H, Nenoi M, Mita K, Daino K, Igarashi K, Ichimura S., Functional characterization of the human spermidine/spermine N(1)-acetyltransferase gene promoter Biochim Biophys Acta 1579:180–184, 2002PubMedGoogle Scholar
  136. 136.
    Patterson AV, Barham HM, Chinje EC, Adams GE, Harris AL, Stratford IJ, Importance of P450 reductase activity in determining sensitivity of breast tumour cells to the bioreductive drug, tirapazamine (SR 4233). Br J Cancer 72:1144–1150, 1995PubMedGoogle Scholar
  137. 137.
    Shephard EA, Phillips IR, Santisteban I, West LF, Palmer CN, Ashworth A, Povey S, Isolation of a human cytochrome P-450 reductase cDNA clone and localization of the corresponding gene to chromosome 7q11.2 Ann Hum Genet 53 (Pt 4): 291–301, 1989PubMedGoogle Scholar
  138. 138.
    Oyake T, Itoh K, Motohashi H, Hayashi N, Hoshino H, Nishizawa M, Yamamoto M, Igarashi K, Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK, regulate transcription through the NF-E2 site Mol Cell Biol 16:6083–6095, 1996PubMedGoogle Scholar
  139. 139.
    Ohira M, Seki N, Nagase T, Ishikawa K, Nomura N, Ohara O, Characterization of a human homolog (BACH1) of the mouse Bach1 gene encoding a BTB-basic leucine zipper transcription factor and its mapping to chromosome 21q22.1 Genomics 47:300–306, 1998CrossRefPubMedGoogle Scholar
  140. 140.
    Chen LH, Liu ML, Hwang HY, Chen LS, Korenberg J, Shane B, Human methionine synthase. cDNA cloning, gene localization, and expression J Biol Chem 272:3628–3634, 1997CrossRefPubMedGoogle Scholar
  141. 141.
    Paz MF, Avila S, Fraga MF, Pollan M, Capella G, Peinado MA, Sanchez-Cespedes M, Herman JG, Esteller M, Germ-line variants in methyl-group metabolism genes and susceptibility to DNA methylation in normal tissues and human primary tumors Cancer Res 62:4519–4524, 2002PubMedGoogle Scholar
  142. 142.
    Tong B, Grimes HL, Yang TY, Bear SE, Qin Z, Du K, El Deiry WS, Tsichlis PN, The Gfi-1B proto-oncoprotein represses p21WAF1 and inhibits myeloid cell differentiation Mol Cell Biol18:2462–2473, 1998PubMedGoogle Scholar
  143. 143.
    Rodel B, Wagner T, Zornig M, Niessing J, Moroy T, The human homologue (GFI1B) of the chicken GFI gene maps to chromosome 9q34 13-A locus frequently altered in hematopoietic diseases Genomics 54:580–582, 1998CrossRefPubMedGoogle Scholar
  144. 144.
    Palmer A, Zimmer M, Erdmann KS, Eulenburg V, Porthin A, Heumann R, Deutsch U, Klein R, EphrinB phosphorylation and reverse signaling: regulation by Src kinases and PTP-BL phosphatase Mol Cell 9:725–737, 2002CrossRefPubMedGoogle Scholar
  145. 145.
    L'Allemain G, Involvement of ephrins and their receptors in oncogenesis Bull Cancer 87:529–530, 2000PubMedGoogle Scholar
  146. 146.
    Yatouji S, Trussardi-Regnier A, Trentesaux C, Liautaud-Roger F, Dufer J, Nuclear texture and chromatin structure in OV1/VCR human multidrug-resistant cell line Int J Oncol 23:1225–1230, 2003PubMedGoogle Scholar
  147. 147.
    Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS, Wagner L, Shenmen CM, Schuler GD, Altschul SF, Zeeberg B, Buetow KH, Schaefer CF, Bhat NK, Hopkins RF, Jordan H, Moore T, Max SI, Wang J, Hsieh F, Diatchenko L, Marusina K, Farmer AA, Rubin GM, Hong L, Stapleton M, Soares MB, Bonaldo MF, Casavant TL, Scheetz TE, Brownstein MJ, Usdin TB, Toshiyuki S, Carninci P, Prange C, Raha SS, Loquellano NA, Peters GJ, Abramson RD, Mullahy SJ, Bosak SA, McEwan PJ, McKernan KJ, Malek JA, Gunaratne PH, Richards S, Worley KC, Hale S, Garcia AM, Gay LJ, Hulyk SW, Villalon DK, Muzny DM, Sodergren EJ, Lu X, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madan A, Young AC, Shevchenko Y, Bouffard GG, Blakesley RW, Touchman JW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Krzywinski MI, Skalska U, Smailus DE, Schnerch A, Schein JE, Jones SJ, Marra MA, Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences Proc Natl Acad Sci USA 99:16899–16903, 2002CrossRefPubMedGoogle Scholar
  148. 148.
    Ryseck RP, Macdonald-Bravo H, Mattei MG, Bravo R, Cloning and sequence of a secretory protein induced by growth factors in mouse fibroblasts Exp Cell Res 180:266–275, 1989CrossRefPubMedGoogle Scholar
  149. 149.
    Colombat M, Paradis V, Bieche I, Dargere D, Laurendeau I, Belghiti J, Vidaud M, Degott C, Bedossa P, Quantitative RT-PCR in cirrhotic nodules reveals gene expression changes associated with liver carcinogenesis J Pathol 201:260–267, 2003CrossRefPubMedGoogle Scholar
  150. 150.
    Li YS, Milner PG, Chauhan AK, Watson MA, Hoffman RM, Kodner CM, Milbrandt J, Deuel TF, Cloning and expression of a developmentally regulated protein that induces mitogenic and neurite outgrowth activity Science 250:1690–1694, 1990PubMedGoogle Scholar
  151. 151.
    Travali S, Ku DH, Rizzo MG, Ottavio L, Baserga R, Calabretta B., Structure of the human gene for the proliferating cell nuclear antigen J Biol Chem 264:7466–7472, 1989PubMedGoogle Scholar
  152. 152.
    Bravo R., Synthesis of the nuclear protein cyclin (PCNA) and its relationship with DNA replication Exp Cell Res 163:287–293, 1986CrossRefPubMedGoogle Scholar
  153. 153.
    Wilde CD, Chow LT, Wefald FC, Cowan NJ, Structure of two human alpha-tubulin genes Proc Natl Acad Sci USA 79:96–100, 1982PubMedGoogle Scholar
  154. 154.
    Banerjee A, Increased levels of tyrosinated alpha-, beta(III)-, and beta(IV)-tubulin isotypes in paclitaxel-resistant MCF-7 breast cancer cells Biochem Biophys Res Commun 293:598–601, 2002CrossRefPubMedGoogle Scholar
  155. 155.
    Ranganathan S, Benetatos CA, Colarusso PJ, Dexter DW, Hudes GR, Altered beta-tubulin isotype expression in paclitaxel-resistant human prostate carcinoma cells Br J Cancer 77:562–566, 1998PubMedGoogle Scholar
  156. 156.
    Sullivan KF, Cleveland DW, Identification of conserved isotype-defining variable region sequences for four vertebrate beta tubulin polypeptide classes Proc Natl Acad Sci USA 83:4327–4331, 1986PubMedGoogle Scholar
  157. 157.
    Rimokh R, Gadoux M, Bertheas MF, Berger F, Garoscio M, Deleage G, Germain D, Magaud JP, FVT-1, a novel human transcription unit affected by variant translocation t(2;18)(p11;q21) of follicular lymphoma Blood 81:136–142, 1993PubMedGoogle Scholar
  158. 158.
    Roy SN, Horwitz SB, A phosphoglycoprotein associated with taxol resistance in J774.2 cells Cancer Res 45:3856–3863, 1985PubMedGoogle Scholar
  159. 159.
    Horwitz SB, Cohen D, Rao S, Ringel I, Shen HJ, Yang CP, Taxol: mechanisms of action and resistance J Natl Cancer Inst Monogr 55–61, 1993Google Scholar
  160. 160.
    Gill DR, Hyde SC, Higgins CF, Valverde MA, Mintenig GM, Sepulveda FV, Separation of drug transport and chloride channel functions of the human multidrug resistance P-glycoprotein Cell 71:23–32, 1992CrossRefPubMedGoogle Scholar
  161. 161.
    Hardy SP, Valverde MA, Goodfellow HR, Higgins CF, Sepulveda FV, Regulation of volume activated chloride channels by protein kinase C- mediated phosphorylation of P-glycoprotein Jpn J Physiol 44(2):S9–15, 1994PubMedGoogle Scholar
  162. 162.
    Hasmann M, Valet GK, Tapiero H, Trevorrow K, Lampidis T, Membrane potential differences between adriamycin-sensitive and -resistant cells as measured by flow cytometry Biochem Pharmacol 38:305–312, 1989CrossRefPubMedGoogle Scholar
  163. 163.
    Belhoussine R, Morjani H, Gillet R, Palissot V, Manfait M, Two distinct modes of oncoprotein expression during apoptosis resistance in vincristine and daunorubicin multidrug-resistant HL60 cells Adv Exp Med Biol 457:365–381, 1999PubMedGoogle Scholar
  164. 164.
    Hoffman MM, Wei LY, Roepe PD, Are altered pHi and membrane potential in hu MDR 1 transfectants sufficient to cause MDR protein-mediated multidrug resistance? J Gen Physiol 108:295–313, 1996CrossRefPubMedGoogle Scholar
  165. 165.
    Spalletti-Cernia D, D'Agnano I, Sorrentino R, Zupi G, Vecchio G, Portella G, Laccetti P, Verapamil reverts resistance to drug-induced apoptosis in Ki-ras-transformed cells by altering the cell membrane and the mitochondrial transmembrane potentials Oncol Res 13:25–35, 2002PubMedGoogle Scholar
  166. 166.
    Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, Ross DD, A multidrug resistance transporter from human MCF-7 breast cancer cells Proc Natl Acad Sci USA 95:15665–15670, 1998CrossRefPubMedGoogle Scholar
  167. 167.
    Hayes JD, Pulford DJ, The glutathione S-transferase supergene family: regulation of GST, the contribution of the isoenzymes to cancer chemoprotection and drug resistance Crit Rev Biochem Mol Biol 30:445–600, 1995PubMedGoogle Scholar
  168. 168.
    Chun E, Lee KY, Bcl-2 and Bcl-xL are important for the induction of paclitaxel resistance in human hepatocellular carcinoma cells Biochem Biophys Res Commun 315:771–779, 2004CrossRefPubMedGoogle Scholar
  169. 169.
    Buchholz TA, Davis DW, McConkey DJ, Symmans WF, Valero V, Jhingran A, Tucker SL, Pusztai L, Cristofanilli M, Esteva FJ, Hortobagyi GN, Sahin AA, Chemotherapy-induced apoptosis and Bcl-2 levels correlate with breast cancer response to chemotherapy Cancer J 9:33–41, 2003PubMedCrossRefGoogle Scholar
  170. 170.
    Zuckerman R, Cheasty JE, A 48 kDa protein arrests cGMP phosphodiesterase activation in retinal rod disk membranes FEBS Lett 207:35–41, 1986CrossRefPubMedGoogle Scholar
  171. 171.
    Wang Q, Zhao J, Brady AE, Feng J, Allen PB, Lefkowitz RJ, Greengard P, Limbird LE, Spinophilin blocks arrestin actions in vitro and in vivo at G protein-coupled receptors Science 304:1940–1944, 2004CrossRefPubMedGoogle Scholar
  172. 172.
    Shimizu N, Soda Y, Kanbe K, Liu HY, Mukai R, Kitamura T, Hoshino H, A putative G protein-coupled receptor, RDC1, is a novel coreceptor for human and simian immunodeficiency viruses J Virol 74:619–626, 2000CrossRefPubMedGoogle Scholar
  173. 173.
    Vlahakis SR, Villasis-Keever A, Gomez T, Vanegas M, Vlahakis N, Paya CV, G protein-coupled chemokine receptors induce both survival and apoptotic signaling pathways J Immunol 169:5546–5554, 2002PubMedGoogle Scholar
  174. 174.
    Li YM, Pan Y, Wei Y, Cheng X, Zhou BP, Tan M, Zhou X, Xia W, Hortobagyi GN, Yu D, Hung MC, Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis Cancer Cell 6:459–469, 2004CrossRefPubMedGoogle Scholar
  175. 175.
    Pham CG, Bubici C, Zazzeroni F, Papa S, Jones J, Alvarez K, Jayawardena S, De SE, Cong R, Beaumont C, Torti FM, Torti SV, Franzoso G, Ferritin heavy chain upregulation by NF-kappaB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species Cell 119:529–542, 2004CrossRefPubMedGoogle Scholar
  176. 176.
    Bubici C, Papa S, Pham CG, Zazzeroni F, Franzoso G, NF-kappaB JNK: An Intricate Affair Cell Cycle 3:2004Google Scholar
  177. 177.
    Yang DC, Jiang X, Elliott RL, Head JF, Antisense ferritin oligonucleotides inhibit growth and induce apoptosis in human breast carcinoma cells Anticancer Res 22:1513–1524, 2002PubMedGoogle Scholar
  178. 178.
    Singh TR, Shankar S, Chen X, Asim M, Srivastava RK, Synergistic interactions of chemotherapeutic drugs and tumor necrosis factor-related apoptosis-inducing ligand/Apo-2 ligand on apoptosis and on regression of breast carcinoma in vivo Cancer Res 63:5390–5400, 2003PubMedGoogle Scholar
  179. 179.
    Aoudjit F, Vuori K, Integrin signaling inhibits paclitaxel-induced apoptosis in breast cancer cells Oncogene 20:4995–5004, 2001CrossRefPubMedGoogle Scholar
  180. 180.
    Maubant S, Staedel C, Gauduchon P, [Integrins, cell response to anti-tumor agents and chemoresistance] Bull Cancer 89:923–934, 2002PubMedGoogle Scholar
  181. 181.
    Bathori G, Cervenak L, Karadi I, Caveolae – an alternative endocytotic pathway for targeted drug delivery Crit Rev Ther Drug Carrier Syst 21:67–95, 2004CrossRefPubMedGoogle Scholar
  182. 182.
    Cai C, Chen J, Overexpression of caveolin-1 induces alteration of multidrug resistance in Hs578T breast adenocarcinoma cells Int J Cancer 111:522–529, 2004CrossRefPubMedGoogle Scholar
  183. 183.
    Uyemura K, Uyemura K, Functional glycoproteins expressed in Schwann cell membrane Neurosci Res 16:9–13, 1993CrossRefPubMedGoogle Scholar
  184. 184.
    Schiemann S, Ruckels M, Engelholm LH, Schwirzke M, Brunner N, Weidle UH, Differential gene expression in human mammary carcinoma cells: identification of a new member of a receptor family Anticancer Res 17:13–20, 1997PubMedGoogle Scholar
  185. 185.
    Kunz-Schughart LA, Heyder P, Schroeder J, Knuechel R, A heterologous 3-D coculture model of breast tumor cells and fibroblasts to study tumor-associated fibroblast differentiation Exp Cell Res 266:74–86, 2001CrossRefPubMedGoogle Scholar
  186. 186.
    Williams GR, Wright NA, Trefoil factor family domain peptides Virchows Arch 431:299–304, 1997CrossRefPubMedGoogle Scholar
  187. 187.
    Millot C, Millot JM, Morjani H, Desplaces A, Manfait M, Characterization of acidic vesicles in multidrug-resistant and sensitive cancer cells by acridine orange staining and confocal microspectrofluorometry J Histochem Cytochem 45:1255–1264, 1997PubMedGoogle Scholar
  188. 188.
    Ouar Z, Bens M, Vignes C, Paulais M, Pringel C, Fleury J, Cluzeaud F, Lacave R, Vandewalle A, Inhibitors of vacuolar H+-ATPase impair the preferential accumulation of daunomycin in lysosomes and reverse the resistance to anthracyclines in drug-resistant renal epithelial cells Biochem J 370:185–193, 2003CrossRefPubMedGoogle Scholar
  189. 189.
    Klohs WD, Steinkampf RW, The effect of lysosomotropic agents and secretory inhibitors on anthracycline retention and activity in multiple drug-resistant cells Mol Pharmacol 34:180–185, 1988PubMedGoogle Scholar
  190. 190.
    Andley UP, Song Z, Wawrousek EF, Fleming TP, Bassnett S, Differential protective activity of alpha A- and alphaB-crystallin in lens epithelial cells J Biol Chem 275:36823–36831, 2000CrossRefPubMedGoogle Scholar
  191. 191.
    Liu JP, Schlosser R, Ma WY, Dong Z, Feng H, Lui L, Huang XQ, Liu Y, Li DW, Human alphaA-, alphaB-crystallins prevent UVA-induced apoptosis through regulation of PKCalpha, RAF/MEK/ERK AKT signaling pathways Exp Eye Res 79:393–403, 2004CrossRefGoogle Scholar
  192. 192.
    Kamradt MC, Lu M, Werner ME, Kwan T, Chen F, Strohecker A, Oshita S, Wilkinson JC, Yu C, Oliver PG, Duckett CS, Buchsbaum DJ, Lobuglio AF, Jordan VC, Cryns VL: The small heat shock protein alpha B-crystallin is a novel inhibitor of TRAIL-induced apoptosis that suppresses the activation of caspase-3. J␣Biol Chem, 2005Google Scholar
  193. 193.
    Kamradt MC, Chen F, Cryns VL, The small heat shock protein alpha B-crystallin negatively regulates cytochrome c- and caspase-8-dependent activation of caspase-3 by inhibiting its autoproteolytic maturation J Biol Chem 276:16059–16063, 2001CrossRefPubMedGoogle Scholar
  194. 194.
    Mao YW, Liu JP, Xiang H, Li DW, Human alphaA- and alphaB-crystallins bind to Bax and Bcl-X(S) to sequester their translocation during staurosporine-induced apoptosis Cell Death Differ 11:512–526, 2004CrossRefPubMedGoogle Scholar
  195. 195.
    Chelouche-Lev D, Kluger HM, Berger AJ, Rimm DL, Price JE, alphaB-crystallin as a marker of lymph node involvement in breast carcinoma Cancer 100:2543–2548, 2004CrossRefPubMedGoogle Scholar
  196. 196.
    Jones C, Mackay A, Grigoriadis A, Cossu A, Reis-Filho JS, Fulford L, Dexter T, Davies S, Bulmer K, Ford E, Parry S, Budroni M, Palmieri G, Neville AM, O'Hare MJ, Lakhani SR, Expression profiling of purified normal human luminal and myoepithelial breast cells: identification of novel prognostic markers for breast cancer Cancer Res 64:3037–3045, 2004CrossRefPubMedGoogle Scholar
  197. 197.
    Redondo M, Villar E, Torres-Munoz J, Tellez T, Morell M, Petito CK, Overexpression of clusterin in human breast carcinoma Am J Pathol 157:393–399, 2000PubMedGoogle Scholar
  198. 198.
    Miyake H, Hara I, Kamidono S, Gleave ME, Eto H, Resistance to cytotoxic chemotherapy-induced apoptosis in human prostate cancer cells is associated with intracellular clusterin expression Oncol Rep 10:469–473, 2003PubMedGoogle Scholar
  199. 199.
    Biroccio A, D'Angelo C, Jansen B, Gleave ME, Zupi G: Antisense clusterin oligodeoxynucleotides increase the response of HER-2 gene amplified breast cancer cells to Trastuzumab. J Cell Physiol, 2005Google Scholar
  200. 200.
    July LV, Beraldi E, So A, Fazli L, Evans K, English JC, Gleave ME, Nucleotide-based therapies targeting clusterin chemosensitize human lung adenocarcinoma cells both in vitro and in vivo Mol Cancer Ther 3:223–232, 2004PubMedGoogle Scholar
  201. 201.
    Miyake H, Chi KN, Gleave ME, Antisense TRPM-2 oligodeoxynucleotides chemosensitize human androgen-independent PC-3 prostate cancer cells both in vitro and in vivo Clin Cancer Res 6:1655–1663, 2000PubMedGoogle Scholar
  202. 202.
    Arnt CR, Chiorean MV, Heldebrant MP, Gores GJ, Kaufmann SH, Synthetic Smac/DIABLO peptides enhance the effects of chemotherapeutic agents by binding XIAP cIAP1 in situ. J Biol Chem 277:44236–44243, 2002CrossRefPubMedGoogle Scholar
  203. 203.
    Floros KV, Thomadaki H, Katsaros N, Talieri M, Scorilas A, mRNA expression analysis of a variety of apoptosis-related genes, including the novel gene of the BCL2-family, BCL2L12, in HL-60 leukemia cells after treatment with carboplatin and doxorubicin Biol Chem 385:1099–1103, 2004CrossRefPubMedGoogle Scholar
  204. 204.
    Bian X, Giordano TD, Lin HJ, Solomon G, Castle VP, Opipari AW, Jr., Chemotherapy-induced apoptosis of S-type neuroblastoma cells requires caspase-9 and is augmented by CD95/Fas stimulationJ Biol Chem279:4663–4669, 2004CrossRefPubMedGoogle Scholar
  205. 205.
    Cui H, Schroering A, Ding HF, p53 mediates DNA damaging drug-induced apoptosis through a caspase-9-dependent pathway in SH-SY5Y neuroblastoma cells Mol Cancer Ther 1:679–686, 2002PubMedGoogle Scholar
  206. 206.
    Varelias A, Koblar SA, Cowled PA, Carter CD, Clayer M, Human osteosarcoma expresses specific ephrin profiles: implications for tumorigenicity and prognosis Cancer 95:862–869, 2002CrossRefPubMedGoogle Scholar
  207. 207.
    Weissbach H, Brot N., Regulation of methionine synthesis in Escherichia coli Mol Microbiol 5:1593–1597, 1991PubMedGoogle Scholar
  208. 208.
    Chen Y, Vujcic S, Liang P, Diegelman P, Kramer DL, Porter CW, Genomic identification and biochemical characterization of a second spermidine/spermine N1-acetyltransferase Biochem J 373:661–667, 2003CrossRefPubMedGoogle Scholar
  209. 209.
    Kanezaki R, Toki T, Yokoyama M, Yomogida K, Sugiyama K, Yamamoto M, Igarashi K, Ito E, Transcription factor BACH1 is recruited to the nucleus by its novel alternative spliced isoform J Biol Chem 276:7278–7284, 2001CrossRefPubMedGoogle Scholar
  210. 210.
    Kitamuro T, Takahashi K, Ogawa K, Udono-Fujimori R, Takeda K, Furuyama K, Nakayama M, Sun J, Fujita H, Hida W, Hattori T, Shirato K, Igarashi K, Shibahara S, Bach1 functions as a hypoxia-inducible repressor for the heme oxygenase-1 gene in human cells J Biol Chem 278:9125–9133, 2003CrossRefPubMedGoogle Scholar
  211. 211.
    Hoffman RM, Altered methionine metabolism and transmethylation in cancer Anticancer Res 5:1–30, 1985PubMedGoogle Scholar
  212. 212.
    Cabot MC, Giuliano AE, Han TY, Liu YY, SDZ PSC 833, the cyclosporine A analogue and multidrug resistance modulator, activates ceramide synthesis and increases vinblastine sensitivity in drug-sensitive and drug-resistant cancer cells Cancer Res 59:880–885, 1999PubMedGoogle Scholar
  213. 213.
    Cabot MC, Han TY, Giuliano AE, The multidrug resistance modulator SDZ PSC 833 is a potent activator of cellular ceramide formation FEBS Lett 431:185–188, 1998CrossRefPubMedGoogle Scholar
  214. 214.
    Bezombes C, Maestre N, Laurent G, Levade T, Bettaieb A, Jaffrezou JP, Restoration of TNF-alpha-induced ceramide generation and apoptosis in resistant human leukemia KG1a cells by the P-glycoprotein blocker PSC833 FASEB J 12:101–109, 1998PubMedGoogle Scholar
  215. 215.
    Ganapathi R, Grabowski D, Schmidt H, Bell D, Melia M, Characterization in vitro and in vivo of progressively adriamycin-resistant B16-BL6 mouse melanoma cells Cancer Res 47:3464–3468, 1987PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • David J. Villeneuve
    • 1
  • Stacey L. Hembruff
    • 1
  • Zachary Veitch
    • 2
  • Melanie Cecchetto
    • 1
  • William A. Dew
    • 2
  • Amadeo M. Parissenti
    • 1
    • 2
    • 3
    Email author
  1. 1.Tumor Biology Research ProgramSudbury Regional HospitalSudburyCanada
  2. 2.Department of BiologyLaurentian UniversitySudburyCanada
  3. 3.Division of Medical SciencesNorthern Ontario School of MedicineSudburyCanada

Personalised recommendations