Breast Cancer Research and Treatment

, Volume 95, Issue 3, pp 243–255 | Cite as

Identification of cell-of-origin breast tumor subtypes in inflammatory breast cancer by gene expression profiling

  • Steven J. Van Laere
  • Gert G. Van den Eynden
  • Ilse Van der Auwera
  • Melanie Vandenberghe
  • Peter van Dam
  • Eric A. Van Marck
  • Kenneth L. van Golen
  • Peter B. Vermeulen
  • Luc Y. Dirix
Preclinical study

Abstract

Inflammatory breast cancer (IBC) is an aggressive form of locally advanced breast cancer with high metastatic potential. Most patients have lymph node involvement at the time of diagnosis and 1/3 of the patients have distant metastases. In a previous study, we demonstrated that IBC is a distinct form of breast cancer in comparison with non-IBC. The aim of this study was to investigate the presence of the different molecular subtypes in our data set of 16 IBC and 18 non-IBC specimen. Therefore, we selected an ‘intrinsic gene set’ of 144 genes, present on our cDNA chips and common to the ‘intrinsic gene set’ described by Sorlie et al. [PNAS, 2003]. This set of genes was tested for performance in the Norway/Stanford data set by unsupervised hierarchical clustering. Expression centroids were then calculated for the core members of each of the five subclasses in the Norway/Stanford data set and used to classify our own specimens by calculating Spearman correlations between each sample and each centroid. We identified the same cell-of-origin subtypes in IBC as those already described in non-IBC. The classification was in good agreement with immunohistochemical data for estrogen receptor protein expression and cytokeratin 5/6 protein expression. Confirmation was done by an alternative unsupervised hierarchical clustering method. The robustness of this classification was assessed by an unsupervised hierarchical clustering with an alternative gene set of 141 genes related to the cell-of-origin subtypes, selected using a discriminating score and iterative random permutation testing. The contribution of the different cell-of-origin subtypes to the IBC phenotype was investigated by principal component analysis. Generally, the combined ErbB2-overexpressing and basal-like cluster was more expressed in IBC compared to non-IBC, whereas the combined luminal A, luminal B and normal-like cluster was more pronounced in non-IBC compared to IBC. The presence of the same molecular cell-of-origin subtypes in IBC as in non-IBC does not exclude the specific molecular nature of IBC, since gene lists that characterize IBC and non-IBC are entirely different from gene lists that define the different cell-of-origin subtypes, as evidenced by principal component analysis.

Keywords

cell-of-origin subtypes gene-expression profiling imflammatory breast cancer microarray 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We would like to thank Professor Charles M. Perou of the Departments of Genetics and Pathology at the Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill for his contribution to the data analysis and for critically reading the manuscript. Gert Van den Eynden is a research assistant of the Fund for Scientific Research Flanders, Belgium. Steven Van Laere is supported by a Research Grant of the University Hospital Antwerp (University of Antwerp, Wilrijk, Belgium). Supported by grant G.0100.04 of the Fund for Scientific Research Flanders, Belgium.

References

  1. 1.
    Key TJ, Verkasalo PK, Banks E, 2001 Epidemiology of breast cancer Lancet Oncol 2: 133–140CrossRefPubMedGoogle Scholar
  2. 2.
    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D, 2000 Molecular portraits of human breast tumors Nature 406: 747–752CrossRefPubMedGoogle Scholar
  3. 3.
    Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lonning P, Borresen-Dale AL, 2001 Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications Proc Natl Acad Sci USA 98: 10869–10874CrossRefPubMedGoogle Scholar
  4. 4.
    Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, Demeter J, Perou CM, Lonning PE, Brown PO, Borresen-Dale AL, Botstein D, 2003 Repeated observation of breast tumor subtypes in independent gene expression data sets Proc Natl Acad Sci USA 100: 8418–8423CrossRefPubMedGoogle Scholar
  5. 5.
    Troester MA, Hoadley KA, Sorlie T, Herbert BS, Borresen-Dale AL, Lonning PE, Shay JW, Kaufmann WK, Perou CM, 2004 Cell-type-specific responses to chemotherapeutics in breast cancer Cancer Res 64: 4218–4226CrossRefPubMedGoogle Scholar
  6. 6.
    Wang ZC, Lin M, Wei LJ, Li C, Miron A, Lodeiro G, Harris L, Ramaswamy S, Tanenbaum DM, Meyerson M, Iglehart JD, Richardson A, 2004 Loss of heterozygosity and its correlation with expression profiles in subclasses of invasive breast cancers Cancer Res 64: 64–71CrossRefPubMedGoogle Scholar
  7. 7.
    Dontu G, El-Ashry D, Wicha MS, 2004 Breast cancer, stem/progenitor cells and the estrogen receptor Trends Endocrinol Metab 15: 193–197CrossRefPubMedGoogle Scholar
  8. 8.
    Lerebours F, Bieche I, Lidereau R, 2005 Update on inflammatory breast cancer Breast Cancer Res 7: 52–55CrossRefPubMedGoogle Scholar
  9. 9.
    American Joint Committee on Cancer 2002 AJCC Cancer Staging Manual Sixth Edition. Springer Verlag, New York, Berlin, Heidelberg p. 221–240Google Scholar
  10. 10.
    Turpin E, Bieche I, Bertheau P, Plassa LF, Lerebours F, de Roquancourt A, Olivi M, Espie M, Marty M, Lidereau R, Vidaud M, de The H, 2002 Increased incidence of ERBB2 overexpression and TP53 mutation in inflammatory breast cancer Oncogene 21: 7593–7597CrossRefPubMedGoogle Scholar
  11. 11.
    Van Golen KL, Davies S, Wu ZF, Wang Y, Bucana CD, Root H, Chandrasekharappa S, Strawderman M, Ethier SP, Merajver SD, 1999 A novel putative low-affinity insulin-like growth factor binding protein, LIBC (lost in inflammatory breast cancer), and RhoC GTPase correlate with the inflammatory breast cancer phenotype Clin Cancer Res 5: 2511–2519PubMedGoogle Scholar
  12. 12.
    Van den Eynden GG, Van der Auwera I, Van Laere S, Colpaert CG, van Dam P, Merajver S, Kleer CG, Harris AL, Van Marck EA, Dirix LY, Vermeulen PB, 2004 Validation of a tissue microarray to study differential protein expression in inflammatory and non-inflammatory breast cancer Breast Cancer Res Treat 85: 13–22CrossRefPubMedGoogle Scholar
  13. 13.
    Van Golen KL, Wu ZF, Qiao XT, Bao LW, Merajver SD, 2000 RhoC GTPase, a novel transforming oncogene for human mammary epithelial cells that partially recapitulates the inflammatory breast cancer phenotype Cancer Res 60: 5832–5838PubMedGoogle Scholar
  14. 14.
    Van Golen KL, Wu ZF, Qiao XT, Bao L, Merajver SD, 2000 RhoC GTPase overexpression modulates induction of angiogenic factors in breast cells Neoplasia 2: 418–425CrossRefPubMedGoogle Scholar
  15. 15.
    Van Golen KL, Bao LW, Pan Q, Miller FR, Wu ZF, Merajver SD, 2002 Mitogen activated protein kinase pathway is involved in RhoC GTPase induced motility, invasion and angiogenesis in inflammatory breast cancer Clin Exp Metast 19: 301–311CrossRefGoogle Scholar
  16. 16.
    Van Golen KL, Bao L, DiVito MM, Wu Z, Prendergast GC, Merajver SD, 2002 Reversion of RhoC GTPase-induced inflammatory breast cancer phenotype by treatment with a farnesyl transferase inhibitor Mol Cancer Ther 1: 575–583PubMedGoogle Scholar
  17. 17.
    Kleer CG, Zhang Y, Pan Q, van Golen KL, Wu ZF, Livant D, Merajver SD, 2002 WISP3 is a novel tumor suppressor gene of inflammatory breast cancer Oncogene 21: 3172–3180CrossRefPubMedGoogle Scholar
  18. 18.
    Kleer CG, Zhang Y, Pan Q, Gallagher G, Wu M, Wu ZF, Merajver SD, 2004 WISP3 and RhoC guanosine triphosphatase cooperate in the development of inflammatory breast cancer Breast Cancer Res 6: R110–115CrossRefGoogle Scholar
  19. 19.
    Kleer CG, Zhang Y, Pan Q, Merajver SD, 2004 WISP3 (CCN6) is a secreted tumor-suppressor protein that modulates IGF signaling in inflammatory breast cancer Neoplasia 6: 179–185CrossRefPubMedGoogle Scholar
  20. 20.
    Colpaert CG, Vermeulen PB, Benoy I, Soubry A, van Roy F, van Beest P, Goovaerts G, Dirix LY, van Dam P, Fox SB, Harris AL, van Marck EA, 2003 Inflammatory breast cancer shows angiogenesis with high endothelial proliferation rate and strong E-cadherin expression Br J Cancer 88: 718–725CrossRefPubMedGoogle Scholar
  21. 21.
    Van der Auwera I, Van Laere SJ, Van den Eynden GC, Benoy I, van Dam P, Colpaert CG, Fox SB, Turley H, Harris AL, Van Marck EA, Vermeulen PB, Dirix LY, 2004 Increased angiogenesis and lymphangiogenesis in inflammatory versus noninflammatory breast cancer by real-time reverse transcriptase-PCR gene expression quantification Clin Cancer Res 10: 7965–7971CrossRefPubMedGoogle Scholar
  22. 22.
    Bertucci F, Finetti P, Rougemont J, Charafe-Jauffret E, Nasser V, Loriod B, Camerlo J, Tagett R, Tarpin C, Houvenaeghel G, Nguyen C, Maraninchi D, Jacquemier J, Houlgatte R, Birnbaum D, Viens P, 2004 Gene expression profiling for molecular characterization of inflammatory breast cancer and prediction of response to chemotherapy Cancer Res 64: 8558–8565CrossRefPubMedGoogle Scholar
  23. 23.
    Van Laere SJ, Van der Auwera I, Van den Eynden GG, Fox SB, Bianchi F, Harris AL, van Dam P, Van Marck EA, Vermeulen PB, Dirix LY, 2005 Distinct molecular signature of inflammatory breast cancer by cDNA microarray analysis Breast Cancer Res Treat, accepted for publicationGoogle Scholar
  24. 24.
    Bertucci F, Finetti P, Rougemont J, Charafe-Jauffret E, Cervera N, Tarpin C, Nguyen C, Xerri L, Houlgatte R, Jacquemier J, Viens P, Birnbaum D, 2005 Gene expression profiling identifies molecular subtypes of inflammatory breast cancer Cancer Res 65: 2170–2178CrossRefPubMedGoogle Scholar
  25. 25.
    Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES, 1999 Molecular classification of cancer: class discovery and class prediction by gene expression monitoring Science 286: 531–537CrossRefPubMedGoogle Scholar
  26. 26.
    Magrangeas F, Nasser V, Avet-Loiseau H, Loriod B, Decaux O, Granjeaud S, Bertucci F, Birnbaum D, Nguyen C, Harousseau JL, Bataille R, Houlgatte R, Minvielle S, 2003 Gene expression profiling of multiple myeloma reveals molecular portraits in relation to the pathogenesis of the disease Blood 101: 4998–5006CrossRefPubMedGoogle Scholar
  27. 27.
    Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, Hernandez-Boussard T, Livasy C, Cowan D, Dressler L, Akslen LA, Ragaz J, Gown AM, Gilks CB, van de Rijn M, Perou CM, 2004 Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma Clin Cancer Res 10: 5367–5374CrossRefPubMedGoogle Scholar
  28. 28.
    Guerin M, Gabillot M, Mathieu MC, Travagli JP, Spielmann M, Andrieu N, Riou G, 1989 Structure and expression of c-erbB-2 and EGF receptor genes in inflammatory and non-inflammatory breast cancer: prognostic significance Int J Cancer 43: 201–208PubMedCrossRefGoogle Scholar
  29. 29.
    Tsuda H, Morita D, Kimura M, Shinto E, Ohtsuka Y, Matsubara O, Inazawa J, Tamaki K, Mochizuki H, Tamai S, Hiraide H, 2005 Correlation of KIT and EGFR overexpression with invasive ductal breast carcinoma of the solid-tubular subtype, nuclear grade 3, and mesenchymal or myoepithelial differentiation Cancer Sci 96: 48–53PubMedGoogle Scholar
  30. 30.
    Vincent-Salomon A, Thiery JP, 2003 Host microenvironment in breast cancer development: epithelial-mesenchymal transition in breast cancer development Breast Cancer Res 5: 101–106CrossRefPubMedGoogle Scholar
  31. 31.
    Deugnier MA, Faraldo MM, Janji B, Rousselle P, Thiery JP, Glukhova MA, 2002 EGF controls the in vivo developmental potential of a mammary epithelial cell line possessing progenitor properties J Cell Biol 159: 453–463CrossRefPubMedGoogle Scholar
  32. 32.
    Petersen OW, Lind Nielsen H, Gudjonsson T, Villadsen R, Ronnov-Jessen L, Bissell MJ, 2001 The plasticity of human breast carcinoma cells is more than epithelial to mesenchymal conversion Breast Cancer Res 3: 213–217CrossRefPubMedGoogle Scholar
  33. 33.
    Huber MA, Beug H, Wirth T, 2004 Epithelial-mesenchymal transition: NF-kappaB takes center stage Cell Cycle 3: 1477–1480PubMedGoogle Scholar
  34. 34.
    Huber MA, Azoitei N, Baumann B, Grunert S, Sommer A, Pehamberger H, Kraut N, Beug H, Wirth T, 2004 NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression J Clin Invest 114: 569–581CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Steven J. Van Laere
    • 1
  • Gert G. Van den Eynden
    • 1
  • Ilse Van der Auwera
    • 1
  • Melanie Vandenberghe
    • 1
  • Peter van Dam
    • 1
  • Eric A. Van Marck
    • 1
  • Kenneth L. van Golen
    • 2
  • Peter B. Vermeulen
    • 1
    • 3
  • Luc Y. Dirix
    • 1
  1. 1.Translational Cancer Research Group, Lab Pathology University of Antwerp and Oncology Center, General Hospital Sint-AugustinusWilrijkBelgium
  2. 2.Department of Internal Medicine, Division of Hematology and OncologyThe␣University of Michigan Comprehensive Cancer CenterAnn ArborUSA
  3. 3.Department of PathologyAZ Sint-AugustinusWilrijkBelgium

Personalised recommendations