Breast Cancer Research and Treatment

, Volume 94, Issue 2, pp 185–193 | Cite as

Tissue Inhibitor of Metalloproteinases-1 Stimulates Gene Expression in MDA-MB-435 Human Breast Cancer Cells by Means of its Ability to Inhibit Metalloproteinases

  • Joseph F. Porter
  • Shashi Sharma
  • Donna L. Wilson
  • Maya A. Kappil
  • Ronald P. Hart
  • David T. DenhardtEmail author


Tissue inhibitor of metalloproteinases-1 (TIMP-1) is a widely expressed, secreted protein that functions primarily to inhibit members of a large family of metalloproteinases (MPs). Because of the ability of TIMP-1 to inhibit MPs, it functions in many of the same pathophysiological processes as these enzymes, e.g. wound healing, ovulation, angiogenesis, and cancer cell metastasis. TIMP-1 can also stimulate proliferation ([3H]thymidine incorporation) and cellular anabolic processes (Alamar Blue reduction). This stimulation has been shown to be dependent on the MP-inhibitory ability of TIMP-1 in the human breast cancer cell line MDA-MB-435 (Porter et al., Br J Cancer 90: 463, 2004). To shed light on the mechanism by which TIMP-1 stimulates cellular anabolic processes, an oligonucleotide microarray analysis was performed over a time course of TIMP-1 treatment of MDA-MB-435 cells. Fifteen genes whose mRNAs were differentially regulated were identified. Six (Importin-7, MGC10471, FOXC1, subunit p20 of Arp2/3 complex, mitochondrial ribosomal protein L32, and the serine/threonine kinase-4 (MST1)) of these genes were confirmed by quantitative real time PCR. These same mRNAs were shown to be regulated by the synthetic hydroxamate MP-inhibitor GM6001 but not by its inactive derivative GM6001*, suggesting that the differential regulation occurs through the MP-inhibitory ability of TIMP-1. These results suggest a complex action of TIMP-1 on cancer cells mediated by constitutively active cell surface metalloproteinases that release factors regulating cell signaling pathways; they may account for the paradoxical observation that elevated levels of TIMP-1 in tumors can correlate with an adverse prognosis.


cell metabolism metalloproteinase inhibitor microarray analysis sheddase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brew, K, Dinakarpandian, D, Nagase, H 2000Tissue inhibitors of metalloproteinases: evolution, structure and functionBiochim Biophys Acta1477267283PubMedGoogle Scholar
  2. 2.
    Baker, AH, Edwards, DR, Murphy, G 2002Metalloproteinase inhibitors: biological actions and therapeutic opportunitiesJ Cell Sci11537193727CrossRefPubMedGoogle Scholar
  3. 3.
    Yana, I, Seiki, M 2002MT-MMPs play pivotal roles in cancer disseminationClin Exp Metastasis19209215CrossRefPubMedGoogle Scholar
  4. 4.
    Duffy, MJ, Lynn, DJ, Lloyd, AT, O’Shea, CM 2003The ADAMs family of proteins: from basic studies to potential clinical applicationsThromb Haemost89622631PubMedGoogle Scholar
  5. 5.
    Nakopoulou, L, Giannopoulou, I, Lazaris, AC, Alexandrou, P, Tsirmpa, I, Markaki, S, Panayotopoulou, E, Keramopoulos, A 2003The favorable prognostic impact of tissue inhibitor of matrix metalloproteinases-1 protein overexpression in breast cancer cellsAPMIS11110271036CrossRefPubMedGoogle Scholar
  6. 6.
    Fong, KM, Kida, Y, Zimmerman, PV, Smith, PJ 1996TIMP1 and adverse prognosis in non-small cell lung cancerClin Cancer Res213691372PubMedGoogle Scholar
  7. 7.
    Ree, AH, Florenes, VA, Berg, JP, Maelandsmo, GM, Nesland, JM, Fodstad, O 1997High levels of messenger RNAs for tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) in primary breast carcinomas are associated with development of distant metastasesClin Cancer Res316231628PubMedGoogle Scholar
  8. 8.
    McCarthy, K, Maguire, T, McGreal, G, McDermott, E, O’Higgins, N, Duffy, MJ 1999High levels of tissue inhibitor of metalloproteinase-1 predict poor outcome in patients with breast cancerInt J Cancer844448CrossRefPubMedGoogle Scholar
  9. 9.
    Nakopoulou, L, Giannopoulou, I, Stefanaki, K, Panayotopoulou, E, Tsirmpa, I, Alexandrou, P, Mavrommatis, J, Katsarou, S, Davaris, P 2002Enhanced mRNA expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) in breast carcinomas is correlated with adverse prognosisJ Pathol197307313CrossRefPubMedGoogle Scholar
  10. 10.
    Schrohl, AS, Christensen, IJ, Pedersen, AN, Jensen, V, Mouridsen, H, Murphy, G, Foekens, JA, Brunner, N, Holten-Andersen, MN 2003Tumor tissue concentrations of the proteinase inhibitors tissue inhibitor of metalloproteinases-1 (TIMP-1) and plasminogen activator inhibitor type 1 (PAI-1) are complementary in determining prognosis in primary breast cancerMol Cell Proteomics2164172CrossRefPubMedGoogle Scholar
  11. 11.
    Schrohl, AS, Holten-Andersen, MN, Peters, HA, Look, MP, Meijer-van Gelder, ME, Klijn, JG, Brunner, N, Foekens, JA 2004Tumor tissue levels of tissue inhibitor of metalloproteinase-1 as a prognostic marker in primary breast cancerClin Cancer Res10289298Google Scholar
  12. 12.
    Talvensaari-Mattila, A, Turpeenniemi-Hujanen, T 2005High preoperative serum TIMP-1 is a prognostic indicator for survival in breast carcinomaBreast Cancer Res Treat892934CrossRefPubMedGoogle Scholar
  13. 13.
    Denhardt DT: On the paradoxical ability of TIMPs either to inhibit or to promote the development and progression of themalignant phenotype. In: Hawkes SP, Edwards DR, Khokha R (eds) Tissue Inhibitors of Metalloproteinases in Development and Disease. Harwood Academic Publishers, 2000, pp 137–151Google Scholar
  14. 14.
    Lorenzo, MS, Ripoll, GV, Yoshiji, H, Yamazaki, M, Thorgeirsson, UP, Alonso, DF, Gomez, DE 2003Altered tumor angiogenesis and metastasis of B16 melanoma in transgenic mice overexpressing tissue inhibitor of metalloproteinases-1In Vivo174550PubMedGoogle Scholar
  15. 15.
    Porter, JF, Shen, S, Denhardt, DT 2004Tissue inhibitor of metalloproteinase-1 stimulates proliferation of human cancer cells by inhibiting a metalloproteinasesBr J Cancer90463470CrossRefPubMedGoogle Scholar
  16. 16.
    Hayakawa, T, Yamashita, K, Tanzawa, K, Uchijima, E, Iwata, K 1992Growth-promoting activity of tissue inhibitor of metalloproteinases-1 (TIMP-1) for a wide range of cells; a possible new growth factor in serumFEBS Lett2982932CrossRefPubMedGoogle Scholar
  17. 17.
    Luparello, C, Avancato, G, Carella, C, Pucci-Minafra, I 1999Tissue inhibitor of metalloprotease (TIMP)-1 and proliferative behaviour of clonal breast cancer cellsBreast Cancer Res Treat54235244CrossRefPubMedGoogle Scholar
  18. 18.
    Yamashita, K, Suzuki, M, Iwata, H, Koike, T, Hamaguchi, M, Shinagawa, A, Noguchi, T, Hayakawa, T 1996Tyrosine phosphorylation is crucial for growth signaling by tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2)FEBS Lett396103107CrossRefPubMedGoogle Scholar
  19. 19.
    Wang, T, Yamashita, K, Iwata, K, Hayakawa, T 2002Both tissue inhibitors of metalloproteinases-1 (TIMP-1) and TIMP-2 activate Ras but through different pathwaysBiochem Biophys Res Commun296201205CrossRefPubMedGoogle Scholar
  20. 20.
    Mannello, F, Gazzanelli, G 2001Tissue inhibitors of metalloproteinases and programmed cell death: conundrums, controversies and potential implicationsApoptosis6479482CrossRefPubMedGoogle Scholar
  21. 21.
    Lee, SJ, Yoo, HJ, Bae, YS, Kim, HJ, Lee, ST 2003TIMP-1 inhibits apoptosis in breast carcinoma cells via a pathway involving pertussis toxin-sensitive G protein and c-SrcBiochem Biophys Res Commun31211961201CrossRefPubMedGoogle Scholar
  22. 22.
    Li, G, Fridman, R, Kim, HR 1999Tissue inhibitor of metalloproteinase-1 inhibits apoptosis of human breast epithelial cellsCancer Res5962676275PubMedGoogle Scholar
  23. 23.
    Liu, XW, Bernardo, MM, Fridman, R, Kim, HR 2003Tissue inhibitor of metalloproteinase-1 protects human breast epithelial cells against intrinsic apoptotic cell death via the focal adhesion kinase/ phosphatidylinositol 3-kinase and MAPK signaling pathwayJ Biol Chem2784036440372CrossRefPubMedGoogle Scholar
  24. 24.
    Khokha, R, Waterhouse, P, Yagel, S, Lala, PK, Overall, CM, Norton, G, Denhardt, DT 1989Antisense RNA-induced reduction in murine TIMP levels confers oncogenicity on Swiss 3T3 cellsScience243947950PubMedGoogle Scholar
  25. 25.
    Yoshiji, H, Harris, SR, Raso, E, Gomez, DE, Lindsay, CK, Shibuya, M, Sinha, CC, Thorgeirsson, UP 1998Mammary carcinoma cells over-expressing tissue inhibitor of metalloproteinases-1 show enhanced vascular endothelial growth factor expressionInt J Cancer758187CrossRefPubMedGoogle Scholar
  26. 26.
    Sellappan, S, Grijalva, R, Zhou, X, Yang, W, Eli, MB, Mills, GB, Yu, D 2004Lineage infidelity of MDA-MB-435 cells: expression of melanocyte proteins in a breast cancer cell lineCancer Res6434793485CrossRefPubMedGoogle Scholar
  27. 27.
    Hooper, NM, Karran, EH, Turner, AJ 1997Membrane protein secretasesBiochem J321265279PubMedGoogle Scholar
  28. 28.
    Kheradmand, F, Werb, Z 2002Shedding light on sheddases: role in growth and developmentBioessays24812CrossRefPubMedGoogle Scholar
  29. 29.
    Dudley, AM, Aach, J, Steffen, MA, Church, GM 2002Measuring absolute expression with microarrays with a calibrated reference sample and an extended signal intensity rangeProc Natl Acad Sci USA9975547559CrossRefPubMedGoogle Scholar
  30. 30.
    Carmel, JB, Kakinohana, O, Mestril, R, Young, W, Marsala, M, Hart, RP 2004Mediators of ischemic preconditioning identified by microarray analysis of rat spinal cordExp Neurol1858196CrossRefPubMedGoogle Scholar
  31. 31.
    Avalos, BR, Kaufman, SE, Tomonaga, M, Williams, RE, Golde, DW, Gasson, JC 1988K562 cells produce and respond to human erythroid-potentiating activityBlood7117201725PubMedGoogle Scholar
  32. 32.
    Bertaux, B, Hornebeck, W, Eisen, AZ, Dubertret, L 1991Growth stimulation of human keratinocytes by tissue inhibitor of metalloproteinasesJ Invest Dermatol97679685CrossRefPubMedGoogle Scholar
  33. 33.
    Chesler, L, Golde, DW, Bersch, N, Johnson, MD 1995Metalloproteinase inhibition and erythroid potentiation are independent activities of tissue inhibitor of metalloproteinases-1Blood8645064515PubMedGoogle Scholar
  34. 34.
    Akahane, T, Akahane, M, Shah, A, Connor, CM, Thorgeirsson, UP 2004TIMP-1 inhibits microvascular endothelial cell migration by MMP-dependent and MMP-independent mechanismsExp Cell Res301158167CrossRefPubMedGoogle Scholar
  35. 35.
    Akahane, T, Akahane, M, Shah, A, Thorgeirsson, UP 2004TIMP-1 stimulates proliferation of human aortic smooth muscle cells and Ras effector pathwaysBiochem Biophys Res Commun324440445CrossRefPubMedGoogle Scholar
  36. 36.
    Lee, MH, Maskos, K, Knauper, V, Dodds, P, Murphy, G 2002Mapping and characterization of the functional epitopes of tissue inhibitor of metalloproteinases (TIMP)-3 using TIMP-1 as the scaffold: a new frontier in TIMP engineeringProtein Sci1124932503CrossRefPubMedGoogle Scholar
  37. 37.
    Lang, R, Braun, M, Sounni, NE, Noel, A, Frankenne, F, Foidart, JM, Bode, W, Maskos, K 2004Crystal structure of the catalytic domain of MMP-16/MT3-MMP: characterization of MT-MMP specific featuresJ Mol Biol336213225CrossRefPubMedGoogle Scholar
  38. 38.
    Kolkenbrock, H, Essers, L, Ulbrich, N, Will, H 1999Biochemical characterization of the catalytic domain of membrane-type 4 matrix metalloproteinasesBiol Chem38011031108CrossRefPubMedGoogle Scholar
  39. 39.
    English, WR, Velasco, G, Stracke, JO, Knauper, V, Murphy, G 2001Catalytic activities of membrane-type 6 matrix metalloproteinase (MMP25)FEBS Lett491137142CrossRefPubMedGoogle Scholar
  40. 40.
    White, JM 2003ADAMs: modulators of cell-cell and cell-matrix interactionsCurr Opin Cell Biol15598606CrossRefPubMedGoogle Scholar
  41. 41.
    Amour, A, Knight, CG, Webster, A, Slocombe, PM, Stephens, PE, Knauper, V, Docherty, AJ, Murphy, G 2000The in vitro activity of ADAM-10 is inhibited by TIMP-1 and TIMP-3FEBS Lett473275279CrossRefPubMedGoogle Scholar
  42. 42.
    Franzke, CW, Tasanen, K, Schacke, H, Zhou, Z, Tryggvason, K, Mauch, C, Zigrino, P, Sunnarborg, S, Lee, DC, Fahrenholz, F, Bruckner-Tuderman, L 2002Transmembrane collagen XVII, an epithelial adhesion protein, is shed from the cell surface by ADAMsEMBO J2150265035CrossRefPubMedGoogle Scholar
  43. 43.
    Codony-Servat, J, Albanell, J, Lopez-Talavera, JC, Arribas, J, Baselga, J 1999Cleavage of the HER2 ectodomain is a pervanadate-activable process that is inhibited by the tissue inhibitor of metalloproteases-1 in breast cancer cellsCancer Res5911961201PubMedGoogle Scholar
  44. 44.
    Lemjabbar, H, Basbaum, C 2002Platelet-activating factor receptor and ADAM10 mediate responses to Staphylococcus aureus in epithelial cellsNat Med84146CrossRefPubMedGoogle Scholar
  45. 45.
    Yan, Y, Shirakabe, K, Werb, Z 2002The metalloprotease Kuzbanian (ADAM10) mediates the transactivation of EGF receptor by G protein-coupled receptorsJ Cell Biol158221226CrossRefPubMedGoogle Scholar
  46. 46.
    Moss, ML, Lambert, MH 2002Shedding of membrane proteins by ADAM family proteasesEssays Biochem38141153PubMedGoogle Scholar
  47. 47.
    Sahin, U, Weskamp, G, Kelly, K, Zhou, HM, Higashiyama, S, Peschon, J, Hartmann, D, Saftig, P, Blobel, CP 2004Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligandsJ Cell Biol164769779CrossRefPubMedGoogle Scholar
  48. 48.
    Lunn, CA, Fan, X, Dalie, B, Miller, K, Zavodny, PJ, Narula, SK, Lundell, D 1997Purification of ADAM 10 from bovine spleen as a TNFalpha convertaseFEBS Lett400333335CrossRefPubMedGoogle Scholar
  49. 49.
    Shen, WH, Zhou, JH, Broussard, SR, Freund, GG, Dantzer, R, Kelley, KW 2002Proinflammatory cytokines block growth of breast cancer cells by impairing signals from a growth factor receptorCancer Res6247464756PubMedGoogle Scholar
  50. 50.
    Shen, WH, Yin, Y, Broussard, SR, McCusker, RH, Freund, GG, Dantzer, R, Kelley, KW 2004Tumor necrosis factor alpha inhibits cyclin A expression and retinoblastoma hyperphosphorylation triggered by insulin-like growth factor-I induction of new E2F-1 synthesisJ Biol Chem27974387446CrossRefPubMedGoogle Scholar
  51. 51.
    Tanaka, T, Tanaka, K, Ogawa, S, Kurokawa, M, Mitani, K, Yazaki, Y, Shibata, Y, Hirai, H 1997An acute myeloid leukemia gene, AML1, regulates transcriptional activation and hemopoietic myeloid cell differentiation antagonistically by two alternative spliced formsLeukemia11299302CrossRefGoogle Scholar
  52. 52.
    Smith, JM, Koopman, PA 2004The ins and outs of transcriptional control: nucleocytoplasmic shuttling in development and diseaseTrends Genet2048CrossRefPubMedGoogle Scholar
  53. 53.
    Chu, J, Bresnick, EH 2004Evidence that C promoter-binding factor 1 binding is required for Notch-1-mediated repression of activator protein-1J Biol Chem2791233712345CrossRefPubMedGoogle Scholar
  54. 54.
    Mizutani, T, Taniguchi, Y, Aoki, T, Hashimoto, N, Honjo, T 2001Conservation of the biochemical mechanisms of signal transduction among mammalian Notch family membersProc Natl Acad Sci USA9890269031CrossRefPubMedGoogle Scholar
  55. 55.
    Porter JF: Characterization of the metabolic stimulation caused by tissue inhibitor of metalloproteinases-1 on human breast cancer cells. Doctoral Dissertation, Rutgers University, 2004Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Joseph F. Porter
    • 1
  • Shashi Sharma
    • 2
  • Donna L. Wilson
    • 3
  • Maya A. Kappil
    • 4
  • Ronald P. Hart
    • 3
    • 5
  • David T. Denhardt
    • 1
    • 2
    • 5
    Email author
  1. 1.The Graduate Program in Microbiology and Molecular Genetics, Nelson LaboratoriesRutgers UniversityPiscatawayUSA
  2. 2.Cancer Institute of New JerseyNew BrunswickUSA
  3. 3.W.M. Keck Center for Collaborative Neuroscience, Nelson LaboratoriesRutgers UniversityPiscatawayUSA
  4. 4.Rutgers CollegeNew BrunswickUSA
  5. 5.Department of Cell Biology and NeuroscienceRutgers UniversityPiscatawayUSA

Personalised recommendations