Breast Cancer Research and Treatment

, Volume 94, Issue 2, pp 115–122 | Cite as

Mammographic Breast Density and the Gail Model for Breast Cancer Risk Prediction in a Screening Population

  • Jeffrey A. Tice
  • Steven R. Cummings
  • Elad Ziv
  • Karla Kerlikowske
Epidemiology

Summary

Background. Estimating an individual woman’s absolute risk for breast cancer is essential for decision making about screening and preventive recommendations. Although the current standard, the Gail model, is well calibrated in populations, it performs poorly for individuals. Mammographic breast density (BD) may improve the predictive accuracy of the Gail model.

Methods. Prospective observational cohort of 81,777 women in the San Francisco Mammography Registry presenting for mammography during 1993 through 2002 who had no prior diagnosis of breast cancer. Breast density was rated by clinical radiologists using the Breast Imaging Reporting and Data System classification (almost entirely fat; scattered fibroglandular densities; heterogeneously dense; extremely dense). Breast cancer cases were identified through linkage to Northern California Surveillance Epidemiology End Results (SEER) program. We compared the predictive accuracy of models with Gail risk, breast density, and the combination. All models were adjusted for age and ethnicity.

Results. During 5.1 years of follow-up, 955 women were diagnosed with invasive breast cancer. The Gail model had modest predictive accuracy (concordance index (c-index) 0.67; 95% CI 0.65–0.68). Adding breast density to the model increased the predictive accuracy to 0.68 (95% CI .66–.70, p < 0.01 compared with the Gail model alone). The model containing only breast density adjusted for age and ethnicity had predictive accuracy equivalent to the Gail model (c-index 0.67, 95% CI 0.65–0.68).

Conclusion. The addition of breast density measured by BI-RADS categories minimally improved the predictive accuracy of the Gail model. A model based on breast density alone adjusted for age and ethnicity was as accurate as the Gail model.

Keywords

breast density breast neoplasms Gail model mammography predictive value of tests risk assessment statistical models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 106(25): 3143–3421, 2002Google Scholar
  2. 2.
    Aspirin for the primary prevention of cardiovascular events: recommendation and rationale. Ann Intern Med 136(2): 157–160, 2002Google Scholar
  3. 3.
    Wilson, PW, D’Agostino, RB, Levy, D, Belanger, AM, Silbershatz, H, Kannel, WB 1998Prediction of coronary heart disease using risk factor categoriesCirculation9718371847PubMedGoogle Scholar
  4. 4.
    Chemoprevention of breast cancer: recommendations and rationale. Ann Intern Med 137(1): 56–58, 2002Google Scholar
  5. 5.
    Gail, MH, Brinton, LA, Byar, DP, Corle, DK, Green, SB, Schairer, C, Mulvihill, JJ 1989Projecting individualized probabilities of developing breast cancer for white females who are being examined annuallyJ Natl Cancer Inst8118791886PubMedGoogle Scholar
  6. 6.
    Costantino, JP, Gail, MH, Pee, D, Anderson, S, Redmond, CK, Benichou, J, Wieand, HS 1999Validation studies for models projecting the risk of invasive and total breast cancer incidenceJ Natl Cancer Inst9115411548CrossRefPubMedGoogle Scholar
  7. 7.
    Spiegelman, D, Colditz, GA, Hunter, D, Hertzmark, E 1994Validation of the Gail et al. model for predicting individual breast cancer riskJ Natl Cancer Inst86600607PubMedGoogle Scholar
  8. 8.
    Rockhill, B, Spiegelman, D, Byrne, C, Hunter, DJ, Colditz, GA 2001Validation of the Gail et al. model of breast cancer risk prediction and implications for chemopreventionJ Natl Cancer Inst93358366CrossRefPubMedGoogle Scholar
  9. 9.
    Gail, MH, Costantino, JP, Bryant, J, Croyle, R, Freedman, L, Helzlsouer, K, Vogel, V 1999Weighing the risks and benefits of tamoxifen treatment for preventing breast cancerJ Natl Cancer Inst9118291846CrossRefPubMedGoogle Scholar
  10. 10.
    Boyd, NF, Byng, JW, Jong, RA, Fishell, EK, Little, LE, Miller, AB, Lockwood, GA, Tritchler, DL, Yaffe, MJ 1995Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening StudyJ Natl Cancer Inst87670675PubMedGoogle Scholar
  11. 11.
    Byrne, C, Schairer, C, Wolfe, J, Parekh, N, Salane, M, Brinton, LA, Hoover, R, Haile, R 1995Mammographic features and breast cancer risk: effects with time, age, and menopause statusJ Natl Cancer Inst8716221629PubMedGoogle Scholar
  12. 12.
    Kato, I, Beinart, C, Bleich, A, Su, S, Kim, M, Toniolo, PG 1995A nested case–control study of mammographic patterns, breast volume, and breast cancer (New York City, NY, United States)Cancer Causes Control6431438CrossRefPubMedGoogle Scholar
  13. 13.
    Ballard-Barbash, R, Taplin, SH, Yankaskas, BC, Ernster, VL, Rosenberg, RD, Carney, PA, Barlow, WE, Geller, BM, Kerlikowske, K, Edwards, BK,  et al. 1997Breast Cancer Surveillance Consortium: a national mammography screening and outcomes databaseAm J Roentgenol16910011008Google Scholar
  14. 14.
    Breast Imaging Reporting and Data System (BI-RADS), 4th ed. American College of Radiology, Reston, VA, 2003Google Scholar
  15. 15.
    Kerlikowske, K, Grady, D, Barclay, J, Frankel, SD, Ominsky, SH, Sickles, EA, Ernster, V 1998Variability and accuracy in mammographic interpretation using the American College of Radiology Breast Imaging Reporting and Data SystemJ Natl Cancer Inst9018011809CrossRefPubMedGoogle Scholar
  16. 16.
    Harrell, FE, Lee, KL, Mark, DB 1996Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errorsStat Med15361387CrossRefPubMedGoogle Scholar
  17. 17.
    DeLong, ER, DeLong, DM, Clarke-Pearson, DL 1988Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approachBiometrics44837845PubMedGoogle Scholar
  18. 18.
    Carney, PA, Miglioretti, DL, Yankaskas, BC, Kerlikowske, K, Rosenberg, R, Rutter, CM, Geller, BM, Abraham, LA, Taplin, SH, Dignan, M,  et al. 2003Individual and combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammographyAnn Intern Med138168175PubMedGoogle Scholar
  19. 19.
    Kerlikowske, K, Grady, D, Barclay, J, Sickles, EA, Ernster, V 1996Effect of age, breast density, and family history on the sensitivity of first screening mammographyJAMA2763338CrossRefPubMedGoogle Scholar
  20. 20.
    Salminen, T, Hakama, M, Heikkila, M, Saarenmaa, I 1998Favorable change in mammographic parenchymal patterns and breast cancer risk factorsInt J Cancer78410414CrossRefPubMedGoogle Scholar
  21. 21.
    Vachon, CM, Kuni, CC, Anderson, K, Anderson, VE, Sellers, TA 2000Association of mammographically defined percent breast density with epidemiologic risk factors for breast cancer (United States)Cancer Causes Control11653662CrossRefPubMedGoogle Scholar
  22. 22.
    Warwick, J, Pinney, E, Warren, RM, Duffy, SW, Howell, A, Wilson, M, Cuzick, J 2003Breast density and breast cancer risk factors in a high-risk populationBreast121016CrossRefPubMedGoogle Scholar
  23. 23.
    El-Bastawissi, AY, White, E, Mandelson, MT, Taplin, SH 2000Reproductive and hormonal factors associated with mammographic breast density by age (United States)Cancer Causes Control11955963CrossRefPubMedGoogle Scholar
  24. 24.
    Roubidoux, MA, Kaur, JS, Griffith, KA, Sloan, J, Wilson, C, Novotny, P, Lobell, M 2003Correlates of mammogram density in southwestern Native-American womenCancer Epidemiol Biomarkers Prev12552558PubMedGoogle Scholar
  25. 25.
    Carney, PA, Kasales, CJ, Tosteson, AN, Weiss, JE, Goodrich, ME, Poplack, SP, Wells, WS, Titus-Ernstoff, L 2004Likelihood of additional work-up among women undergoing routine screening mammography: the impact of age, breast density, and hormone therapy usePrev Med394855CrossRefPubMedGoogle Scholar
  26. 26.
    Roubidoux, MA, Kaur, JS, Griffith, KA, Stillwater, B, Novotny, P, Sloan, J 2003Relationship of mammographic parenchymal patterns to breast cancer risk factors and smoking in Alaska Native womenCancer Epidemiol Biomarkers Prev1210811086PubMedGoogle Scholar
  27. 27.
    Ziv, E, Shepherd, J, Smith-Bindman, R, Kerlikowske, K 2003Mammographic breast density and family history of breast cancerJ Natl Cancer Inst95556558PubMedGoogle Scholar
  28. 28.
    McCormack, VA, Santos Silva, I, Stavola, BL, Perry, N, Vinnicombe, S, Swerdlow, AJ, Hardy, R, Kuh, D 2003Life-course body size and perimenopausal mammographic parenchymal patterns in the MRC 1946 British birth cohortBr J Cancer89852859CrossRefPubMedGoogle Scholar
  29. 29.
    Pankow, JS, Vachon, CM, Kuni, CC, King, RA, Arnett, DK, Grabrick, DM, Rich, SS, Anderson, VE, Sellers, TA 1997Genetic analysis of mammographic breast density in adult women: evidence of a gene effectJ Natl Cancer Inst89549556CrossRefPubMedGoogle Scholar
  30. 30.
    Boyd, NF, Dite, GS, Stone, J, Gunasekara, A, English, DR, McCredie, MR, Giles, GG, Tritchler, D, Chiarelli, A, Yaffe, MJ,  et al. 2002Heritability of mammographic density, a risk factor for breast cancerN Engl J Med347886894CrossRefPubMedGoogle Scholar
  31. 31.
    Gravelle, IH, Bulstrode, JC, Bulbrook, RD, Wang, DY, Allen, D, Hayward, JL 1986A prospective study of mammographic parenchymal patterns and risk of breast cancerBr J Radiol59487491PubMedGoogle Scholar
  32. 32.
    Rakowski, W, Breen, N, Meissner, H, Rimer, BK, Vernon, SW, Clark, MA, Freedman, AN 2004Prevalence and correlates of repeat mammography among women aged 55–79 in the Year 2000 National Health Interview SurveyPrev Med39110CrossRefPubMedGoogle Scholar
  33. 33.
    Rockhill, B, Byrne, C, Rosner, B, Louie, MM, Colditz, G 2003Breast cancer risk prediction with a log-incidence model: evaluation of accuracyJ Clin Epidemiol56856861CrossRefPubMedGoogle Scholar
  34. 34.
    Colditz, GA, Rosner, B 2000Cumulative risk of breast cancer to age 70 years according to risk factor status: data from the Nurses’ Health StudyAm J Epidemiol152950964CrossRefPubMedGoogle Scholar
  35. 35.
    Rosner, B, Colditz, GA 1996Nurses’ health study: log-incidence mathematical model of breast cancer incidenceJ Natl Cancer Inst88359364PubMedGoogle Scholar
  36. 36.
    Pike, MC, Krailo, MD, Henderson, BE, Casagrande, JT, Hoel, DG 1983Hormonal’ risk factors, ‘breast tissue age’ and the age-incidence of breast cancerNature303767770CrossRefPubMedGoogle Scholar
  37. 37.
    Pike, MC, Spicer, DV, Dahmoush, L, Press, MF 1993Estrogens, progestogens, normal breast cell proliferation, and breast cancer riskEpidemiol Rev151735PubMedGoogle Scholar
  38. 38.
    Pepe, MS, Janes, H, Longton, G, Leisenring, W, Newcomb, P 2004Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening markerAm J Epidemiol159882890CrossRefPubMedGoogle Scholar
  39. 39.
    Wald, NJ, Hackshaw, AK, Frost, CD 1999When can a risk factor be used as a worthwhile screening test?Br Med J31915621565Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Jeffrey A. Tice
    • 1
  • Steven R. Cummings
    • 3
    • 4
  • Elad Ziv
    • 1
  • Karla Kerlikowske
    • 2
  1. 1.Division of General Internal Medicine, Department of MedicineUniversity of CaliforniaSan FranciscoUSA
  2. 2.Department of Veteran Affairs and Department of Epidemiology & BiostatisticsGeneral Internal Medicine SectionSan FranciscoUSA
  3. 3.University of CaliforniaSan FranciscoUSA
  4. 4.San Francisco Coordinating CenterSan FranciscoUSA

Personalised recommendations