Breast Cancer Research and Treatment

, Volume 93, Issue 2, pp 159–168 | Cite as

Multiple Signaling Pathways are Activated During Insulin-like Growth Factor-I (IGF-I) Stimulated Breast Cancer Cell Migration

  • Xihong Zhang
  • Min Lin
  • Kenneth L. van Golen
  • Kiyoko Yoshioka
  • Kazuyuki Itoh
  • Douglas Yee


In order to display the full metastatic phenotype, the cancer cell must acquire the ability to migrate. In breast cancer, we have previously shown that insulin-like growth factor I (IGF-I) enhances cell motility in the highly metastatic MDA-231BO cell line by activating the type I IGF receptor (IGF1R). This motility response requires activation of IRS-2 and integrin ligation. In order to identify the key molecules downstream of IRS-2, we examined several signaling pathways known to be involved in cell motility. Focal adhesion kinase (FAK) was not activated by IGF-I, but IGF-I caused redistribution of FAK away from focal adhesion plaques. IGF-I treatment of MDA-231BO cells activated RhoA and inhibition of Rho-kinase (ROCK) inhibited the IGF-mediated motility response. The mitogen activated protein kinase (MAPK), p38, was also activated by IGF-I and inhibition of p38 by SB203580 blocked IGF-I induced cell motility. ROCK inhibition with Y-27632 also inhibited p38 phosphorylation suggesting that p38 lies downstream of ROCK. Both Erk1,2 and phosphatidyl-3 kinase (PI3K) were required for IGF-I stimulated cell motility, but only PI3K appeared to be directly downstream of IGF-I. Thus, IGF-I activation of its receptor coordinates multiple signaling pathways required for cell motility. Defining the key molecules downstream of the type I IGF receptor may provide a basis for optimizing therapies directed at this target.


breast neoplasms cell motility focal adhesion kinase insulin-like growth factor-I mitogen activated protein kinase Rho type I IGF receptor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Doerr, ME, Jones, JI 1996The roles of integrins, extracellular matrix proteins in the insulin-like growth factor I-stimulated chemotaxis of human breast cancer cellsJ Biol Chem27124432447CrossRefPubMedGoogle Scholar
  2. 2.
    Jackson, JG, Zhang, X, Yoneda, T, Yee, D 2001Regulation of breast cancer cell motility by insulin receptor substrate-2 (IRS-2) in metastatic variants of human breast cancer cell linesOncogene2073187325CrossRefPubMedGoogle Scholar
  3. 3.
    Sahai, E, Marshall, CJ 2002RHO-GTPases and cancerNat Rev Cancer2133142CrossRefPubMedGoogle Scholar
  4. 4.
    Jaffer, ZM, Chernoff, J 2004The cross-Rho’ds of cell–cell adhesionJ Biol Chem2793512335126CrossRefPubMedGoogle Scholar
  5. 5.
    Fritz, G, Brachetti, C, Bahlmann, F, Schmidt, M, Kaina, B 2002Rho GTPases in human breast tumours: expression and mutation analyses and correlation with clinical parametersBr J Cancer87635644CrossRefPubMedGoogle Scholar
  6. 6.
    Ahn, SJ, Chung, KW, Lee, RA, Park, IA, Lee, SH, Park, DE, Noh, DY 2003Overexpression of betaPix-a in human breast cancer tissuesCancer Lett19399107CrossRefPubMedGoogle Scholar
  7. 7.
    Schnelzer, A, Prechtel, D, Knaus, U, Dehne, K, Gerhard, M, Graeff, H, Harbeck, N, Schmitt, M, Lengyel, E. 2000Rac1 in human breast cancer: overexpression, mutation analysis, and characterization of a new isoform, Rac1bOncogene1930133020CrossRefPubMedGoogle Scholar
  8. 8.
    Golen, KL, Wu, ZF, Qiao, XT, Bao, LW, Merajver, SD 2000RhoC GTPase, a novel transforming oncogene for human mammary epithelial cells that partially recapitulates the inflammatory breast cancer phenotypeCancer Res6058325838PubMedGoogle Scholar
  9. 9.
    Kleer, CG, Golen, KL, Zhang, Y, Wu, ZF, Rubin, MA, Merajver, SD 2002Characterization of RhoC expression in benign and malignant breast disease: a potential new marker for small breast carcinomas with metastatic abilityAm J Pathol160579584PubMedGoogle Scholar
  10. 10.
    Bouzahzah, B, Albanese, C, Ahmed, F, Pixley, F, Lisanti, MP, Segall, JD, Condeelis, J, Joyce, D, Minden, A, Der, CJ, Chan, A, Symons, M, Pestell, RG. 2001Rho family GTPases regulate mammary epithelium cell growth and metastasis through distinguishable pathwaysMol Med7816830PubMedGoogle Scholar
  11. 11.
    Kimura, K, Ito, M, Amano, M, Chihara, K, Fukata, Y, Nakafuku, M, Yamamori, B, Feng, J, Nakano, T, Okawa, K, Iwamatsu, A, Kaibuchi, K 1996Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase)Science273245248PubMedGoogle Scholar
  12. 12.
    Maekawa, M, Ishizaki, T, Boku, S, Watanabe, N, Fujita, A, Iwamatsu, A, Obinata, T, Ohashi, K, Mizuno, K, Narumiya, S 1999Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinaseScience285895898CrossRefPubMedGoogle Scholar
  13. 13.
    Yoshioka, K, Foletta, V, Bernard, O, Itoh, K 2003A role for LIM kinase in cancer invasionProc Natl Acad Sci USA10072477252CrossRefPubMedGoogle Scholar
  14. 14.
    Ashida, N, Arai, H, Yamasaki, M, Kita, T 2001Distinct signaling pathways for MCP-1-dependent integrin activation and chemotaxisJ Biol Chem2761655516560CrossRefPubMedGoogle Scholar
  15. 15.
    Zhang, S, Han, J, Sells, MA, Chernoff, J, Knaus, UG, Ulevitch, RJ, Bokoch, GM 1995Rho family GTPases regulate p38 mitogen-activated protein kinase through the downstream mediator Pak1J Biol Chem2702393423936CrossRefPubMedGoogle Scholar
  16. 16.
    Bagrodia, S, Derijard, B, Davis, RJ, Cerione, RA 1995Cdc42 and PAK-mediated signaling leads to Jun kinase and p38 mitogen- activated protein kinase activationJ Biol Chem2702799527998CrossRefPubMedGoogle Scholar
  17. 17.
    Brahmbhatt, AA, Klemke, RL 2003ERK and RhoA differentially regulate pseudopodia growth and retraction during chemotaxisJ Biol Chem2781301613025CrossRefPubMedGoogle Scholar
  18. 18.
    Brown, MJ, Hallam, JA, Colucci-Guyon, E, Shaw, S 2001Rigidity of circulating lymphocytes is primarily conferred by vimentin intermediate filamentsJ Immunol16666406646PubMedGoogle Scholar
  19. 19.
    Sin, WC, Chen, XQ, Leung, T, Lim, L 1998RhoA-binding kinase alpha translocation is facilitated by the collapse of the vimentin intermediate filament networkMol Cell Biol1863256339PubMedGoogle Scholar
  20. 20.
    Sachdev, P, Jiang, YX, Li, W, Miki, T, Maruta, H, Nur, EKMS, Wang, LH 2001Differential requirement for Rho family GTPases in an oncogenic insulin-like growth factor-I receptor-induced cell transformationJ Biol Chem2762646126471CrossRefPubMedGoogle Scholar
  21. 21.
    Cheng, HL, Steinway, ML, Russell, JW, Feldman, EL 2000GTPases and phosphatidylinositol 3-kinase are critical for insulin-like growth factor-I-mediated Schwann cell motilityJ Biol Chem2752719727204PubMedGoogle Scholar
  22. 22.
    Zhang, X, Yee, D 2002Insulin-like growth factor binding protein-1 (IGFBP-1) inhibits breast cancer cell motilityCancer Res6243694375PubMedGoogle Scholar
  23. 23.
    Yoneda, T, Williams, PJ, Hiraga, T, Niewolna, M, Nishimura, R 2001A bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitroJ Bone Miner Res1614861495PubMedGoogle Scholar
  24. 24.
    Ratcliffe, MJ, Smales, C, Staddon, JM 1999Dephosphorylation of the catenins p120 and p100 in endothelial cells in response to inflammatory stimuliBiochem J338471478CrossRefPubMedGoogle Scholar
  25. 25.
    Sander, EE, ten Klooster, JP, Delft, S, Kammen, RA, Collard, JG 1999Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behaviorJ Cell Biol14710091022CrossRefPubMedGoogle Scholar
  26. 26.
    Golen, KL, Bao, LW, Pan, Q, Miller, FR, Wu, ZF, Merajver, SD 2002Mitogen activated protein kinase pathway is involved in RhoC GTPase induced motility, invasion and angiogenesis in inflammatory breast cancerClin Exp Metastasis19301311CrossRefPubMedGoogle Scholar
  27. 27.
    Albrecht-Buehler, G. 1977The phagokinetic tracks of 3T3 cellsCell11395404CrossRefPubMedGoogle Scholar
  28. 28.
    Meyer, GE, Shelden, E, Kim, B, Feldman, EL 2001Insulin-like growth factor I stimulates motility in human neuroblastoma cellsOncogene2075427550CrossRefPubMedGoogle Scholar
  29. 29.
    Zhang, X, Kamaraju, S, Hakuno, F, Kabuta, T, Takahashi, S, Sachdev, D, Yee, D 2004Motility response to insulin-like growth factor-I (IGF-I) in MCF-7 cells is associated with IRS-2 activation and integrin expressionBreast Cancer Res Treat83161170CrossRefPubMedGoogle Scholar
  30. 30.
    Maekawa, M, Ishizaki, T, Boku, S, Watanabe, N, Fujita, A, Iwamatsu, A, Obinata, T, Ohashi, K, Mizuno, K, Narumiya, S 1999Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinaseScience285895898CrossRefPubMedGoogle Scholar
  31. 31.
    Jackson, JG, White, MF, Yee, D. 1998Insulin receptor substrate-1 is the predominant signaling molecule activated by insulin-like growth factor-I, insulin, and interleukin-4 in estrogen receptor-positive human breast cancer cellsJ Biol Chem273999410003CrossRefPubMedGoogle Scholar
  32. 32.
    Dufourny, B, Alblas, J, Teeffelen, HA, Schaik, FM, Burg, B, Steenbergh, PH, Sussenbach, JS 1997Mitogenic signaling of insulin-like growth factor I in MCF-7 human breast cancer cells requires phosphatidylinositol 3-kinase and is independent of mitogen-activated protein kinaseJ Biol Chem2723116331171CrossRefPubMedGoogle Scholar
  33. 33.
    Geiger, B, Bershadsky, A 2002Exploring the neighborhood: adhesion-coupled cell mechanosensorsCell110139142CrossRefPubMedGoogle Scholar
  34. 34.
    Guvakova, MA, Surmacz, E 1999The activated insulin-like growth factor I receptor induces depolarization in breast epithelial cells characterized by actin filament disassembly and tyrosine dephosphorylation of FAK, Cas, and paxillinExp Cell Res251244255CrossRefPubMedGoogle Scholar
  35. 35.
    Katz, BZ, Romer, L, Miyamoto, S, Volberg, T, Matsumoto, K, Cukierman, E, Gieger, B, Yamada, KM 2003Targeting membrane-localized FAK to focal adhesions: Roles of tyrosine phosphorylation and Src family kinasesJ Biol Chem1616Google Scholar
  36. 36.
    Lynch, L, Vodyanik, PI, Boettiger, D, Guvakova, MA 2005Insulin-like growth factor I controls adhesion strength mediated by alpha5beta1 integrins in motile carcinoma cellsMol Biol Cell165163CrossRefPubMedGoogle Scholar
  37. 37.
    Berfield, AK, Raugi, GJ, Abrass, CK 1996Insulin induces rapid and specific rearrangement of the cytoskeleton of rat mesangial cells in vitroJ Histochem Cytochem4491101PubMedGoogle Scholar
  38. 38.
    Goto, H, Kosako, H, Tanabe, K, Yanagida, M, Sakurai, M, Amano, M, Kaibuchi, K, Inagaki, M 1998Phosphorylation of vimentin by Rho-associated kinase at a unique amino-terminal site that is specifically phosphorylated during cytokinesisJ Biol Chem2731172811736CrossRefPubMedGoogle Scholar
  39. 39.
    Etienne-Manneville, S, Hall, A 2002Rho GTPases in cell biologyNature420629635Google Scholar
  40. 40.
    Stathopoulou, A, Vlachonikolis, I, Mavroudis, D, Perraki, M, Kouroussis, C, Apostolaki, S, Malamos, N, Kakolyris, S, Kotsakis, A, Xenidis, N, Reppa, D, Georgoulias, V 2002Molecular detection of cytokeratin-19-positive cells in the peripheral blood of patients with operable breast cancer: evaluation of their prognostic significanceJ Clin Oncol2034043412CrossRefPubMedGoogle Scholar
  41. 41.
    Lee, SH, Eom, M, Lee, SJ, Kim, S, Park, HJ, Park, D 2001BetaPix-enhanced p38 activation by Cdc42/Rac/PAK/MKK3/6-mediated pathway. Implication in the regulation of membrane rufflingJ Biol Chem2762506625072CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Xihong Zhang
    • 1
  • Min Lin
    • 2
  • Kenneth L. van Golen
    • 2
  • Kiyoko Yoshioka
    • 3
  • Kazuyuki Itoh
    • 3
  • Douglas Yee
    • 1
  1. 1.Department of MedicineUniversity of Minnesota Cancer CenterMinneapolisUSA
  2. 2.Department of Internal MedicineUniversity of MichiganAnn ArborUSA
  3. 3.Laboratory of Tumor BiologyOsaka Medical Center for CancerOsakaJapan
  4. 4.Department of MedicineUniversity of Minnesota Cancer CenterMinneapolisUSA

Personalised recommendations