Advertisement

Breast Cancer Research and Treatment

, Volume 89, Issue 2, pp 149–157 | Cite as

Significant differences in nipple aspirate fluid protein expression between healthy women and those with breast cancer demonstrated by time-of-flight mass spectrometry

  • Timothy M. Pawlik
  • Herbert Fritsche
  • Kevin R. Coombes
  • Lianchun Xiao
  • Savitri Krishnamurthy
  • Kelly K. Hunt
  • Lajos Pusztai
  • Jeng-Neng Chen
  • Charlotte H. Clarke
  • Banu Arun
  • Mien-Chie Hung
  • Henry M. Kuerer
Report

Abstract

New approaches are needed for the early detection of breast cancer. Proteomic profiling technologies, such as surface-enhanced laser desorption ionization mass spectrometry (SELDI-MS), may be able to identify tumor markers in biological fluids. The objective of this study was to determine whether there are differences in protein expression patterns in nipple aspirate fluid (NAF) from the cancerous and noncancerous breasts of patients with unilateral breast cancer and the breasts of healthy volunteers. Paired NAF samples were obtained from 23 women with stage I or II unilateral invasive breast carcinoma and five healthy female volunteers. Aliquots of the samples were applied to SELDI Protein-chip arrays (WCX2 and IMAC3-Cu++), and protein expression was analyzed using time-of-flight MS. A total of 463 distinct peaks were detected and analyzed. In breast cancer patients, no differences in protein expression were identified between the breast with the intact primary carcinoma and the contralateral noncancerous breast. Seventeen peaks were overexpressed in cancer-bearing breasts compared to breasts of healthy volunteers (p < 0.0005). When spectra from the nontumor-bearing breasts of breast cancer patients were compared with spectra from breasts of healthy volunteers, two peaks that were overexpressed in breast cancer patients and one peak that was underexpressed in breast cancer patients were detected (p < 0.0027). SELDI-MS was able to identify differences in the phenotypic proteomic profile of NAF samples obtained from patients with early-stage breast cancer and healthy women. Proteomic screening techniques such as SELDI-MS analysis of NAF may be useful for breast cancer screening and diagnosis.

Keywords

breast cancer mass spectrometry nipple aspirate proteomics SELDI 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jemal, A, Murray, T, Samuels, A, Ghafoor, A, Ward, E, Thun, MJ 2003Cancer statisticsCA Cancer J Clin53526PubMedCrossRefGoogle Scholar
  2. Donegan, WL 1992Evaluation of a palpable breast massNew Engl J Med327937942PubMedCrossRefGoogle Scholar
  3. Elmore, JG, Barton, MB, Moceri, VM, Polk, S, Arena, PJ, Fletcher, SW 1998Ten-year risk of false positive screening mammograms and clinical breast examinationsNew Engl J Med33810891096PubMedGoogle Scholar
  4. Harris, JR, Lippman, ME, Veronesi, U, Willett, W 1992Breast cancer (1)New Engl J Med327319328PubMedCrossRefGoogle Scholar
  5. Sauter, ER, Ross, E, Daly, M, Klein-Szanto, A, Engstrom, PF, Sorling, A, Malick, J, Ehya, H 1997Nipple aspirate fluid: a promising non-invasive method to identify cellular markers of breast cancer riskBr J Cancer76494501PubMedGoogle Scholar
  6. Sauter, ER, Daly, M, Linahan, K, Ehya, H, Engstrom, PF, Bonney, G, Ross, EA, Yu, H, Diamandis, E 1996Prostate-specific antigen levels in nipple aspirate fluid correlate with breast cancer riskCancer Epidemiol Biomar Prev5967970Google Scholar
  7. Liu, Y, Wang, JL, Chang, H, Barsky, SH, Nguyen, M 2000Breast-cancer diagnosis with nipple fluid bFGF.Lancet356567PubMedGoogle Scholar
  8. Zhao, Y, Verselis, SJ, Klar, N, Sadowsky, NL, Kaelin, CM, Smith, B, Foretova, L, Li, FP 2001Nipple fluid carcinoembryonic antigen and prostate-specific antigen in cancer-bearing and tumor-free breastsJ Clin Oncol1914621467PubMedGoogle Scholar
  9. King, EB, Chew, KL, Petrakis, NL, Ernster, VL 1983Nipple aspirate cytology for the study of breast cancer precursorsJ Natl Cancer Inst7111151121PubMedGoogle Scholar
  10. Wrensch, M, Petrakis, NL, King, EB, Lee, MM, Miike, R 1993Breast cancer risk associated with abnormal cytology in nipple aspirates of breast fluid and prior history of breast biopsyAm J Epidemiol137829833PubMedGoogle Scholar
  11. Kuerer, HM, Goldknopf, IL, Fritsche, H, Krishnamurthy, S, Sheta, EA, Hunt, KK 2002Identification of distinct protein expression patterns in bilateral matched pair breast ductal fluid specimens from women with unilateral invasive breast carcinoma. High-throughput biomarker discoveryCancer9522762282PubMedGoogle Scholar
  12. Paweletz, CP, Trock, B, Pennanen, M, Tsangaris, T, Magnant, C, Liotta, LA, Petricoin, EF,III 2001Proteomic patterns of nipple aspirate fluids obtained by SELDI-TOF: potential for new biomarkers to aid in the diagnosis of breast cancerDis Markers17301307PubMedGoogle Scholar
  13. Dooley, WC, Ljung, BM, Veronesi, U, Cazzaniga, M, Elledge, RM, O’Shaughnessy, JA, Kuerer, HM, Hung, DT, Khan, SA, Phillips, RF, Ganz, PA, Euhus, DM, Esserman, LJ, Haffty, BG, King, BL, Kelley, MC, Anderson, MM, Schmit, PJ, Clark, RR, Kass, FC, Anderson, BO, Troyan, SL, Arias, RD, Quiring, JN, Love, SM, Page, DL, King, EB 2001Ductal lavage for detection of cellular atypia in women at high risk for breast cancerJ Natl Cancer Inst9316241632PubMedCrossRefGoogle Scholar
  14. Evron, E, Dooley, WC, Umbricht, CB, Rosenthal, D, Sacchi, N, Gabrielson, E, Soito, AB, Hung, DT, Ljung, B, Davidson, NE, Sukumar, S 2001Detection of breast cancer cells in ductal lavage fluid by methylation-specific PCRLancet35713351336PubMedGoogle Scholar
  15. Merchant, M, Weinberger, SR 2000Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometryElectrophoresis2111641177PubMedGoogle Scholar
  16. Rogers, MA, Clarke, P, Noble, J, Munro, NP, Paul, A, Selby, PJ, Banks, RE 2003Proteomic profiling of urinary proteins in renal cancer by surface enhanced laser desorption ionization and neural-network analysis: identification of key issues affecting potential clinical utilityCancer Res6369716983PubMedGoogle Scholar
  17. Paweletz, CP, Gillespie, JW, Ornstein, DK, Simone, NL, Brown, MR, Cole, KA, Wang, QH, Huang, J, Hu, N, Yip, TT, Rich, WE, Kohn, EC, Linehan, WM, Weber, T, Taylor, P, Emmert-Buck, MR, Liotta, LA, Petricoin, EF,III 2000Rapid protein display profiling of cancer progression directly from human tissue using a protein biochipDrug Dev Res493442Google Scholar
  18. Wellmann, A, Wollscheid, V, Lu, H, Ma, ZL, Albers, P, Schutze, K, Rohde, V, Behrens, P, Dreschers, S, Ko, Y, Wernert, N 2002Analysis of microdissected prostate tissue with ProteinChip arrays–a way to new insights into carcinogenesis and to diagnostic toolsInt J Mol Med9341347PubMedGoogle Scholar
  19. Eggeling, F, Junker, K, Fiedle, W, Wollscheid, V, Durst, M, Claussen, U, Ernst, G 2001Mass spectrometry meets chip technology: a new proteomic tool in cancer researchElectrophoresis2228982902Google Scholar
  20. Cazares, LH, Adam, BL, Ward, MD, Nasim, S, Schellhammer, PF, Semmes, OJ, Wright, GL,Jr. 2002Normal, benign, preneoplastic, and malignant prostate cells have distinct protein expression profiles resolved by surface enhanced laser desorption/ionization mass spectrometryClin Cancer Res825412552PubMedGoogle Scholar
  21. Kuerer HM, Coombes KR, Chen JN, Xiao LC, Clarke C, Fritsche H, Krishnamurthy S, Marcy S, Hung MC, Hunt KK: Association between ductal fluid proteomic expression profiles and the presence of lymph node metastases in women with breast cancer. Surgery (in Press), 2004 Google Scholar
  22. Sartorius, OW, Smith, HS, Morris, P, Benedict, D, Friesen, L 1977Cytologic evaluation of breast fluid in the detection of breast diseaseJ Natl Cancer Inst5910731080PubMedGoogle Scholar
  23. Coombes, KR, Fritsche, HA,Jr, Clarke, C, Chen, JN, Baggerly, KA, Morris, JS, Xiao, LC, Hung, MC, Kuerer, HM 2003Quality control and peak finding for proteomics data collected from nipple aspirate fluid by surface-enhanced laser desorption and ionizationClin Chem4916151623PubMedGoogle Scholar
  24. Pounds, S, Morris, SW 2003Estimating the occurence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-valuesBioinformatics1912361242PubMedGoogle Scholar
  25. Benjamini, Y, Hochberg, Y 1995Controlling the false discovery rate: a practical and powerful approach to multiple testingJ Roy Stat Soc57289300Google Scholar
  26. Alaiya, AA, Franzen, B, Auer, G, Linder, S 2000Cancer proteomics: from identification of novel markers to creation of artifical learning models for tumor classificationElectrophoresis2112101217PubMedGoogle Scholar
  27. Dwek, MV, Alaiya, AA 2003Proteome analysis enables separate clustering of normal breast, benign breast and breast cancer tissuesBr J Cancer89305307PubMedGoogle Scholar
  28. Yanagisawa, K, Shyr, Y, Xu, BJ, Massion, PP, Larsen, PH, White, BC, Roberts, JR, Edgerton, M, Gonzalez, A, Nadaf, S, Moore, JH, Caprioli, RM, Carbone, DP 2003Proteomic patterns of tumour subsets in non-small-cell lung cancerLancet362433439PubMedGoogle Scholar
  29. Petricoin, EF, Ardekani, AM, Hitt, BA, Levine, PJ, Fusaro, VA, Steinberg, SM, Mills, GB, Simone, C, Fishman, DA, Kohn, EC, Liotta, LA 2002Use of proteomic patterns in serum to identify ovarian cancerLancet359572577CrossRefPubMedGoogle Scholar
  30. Koopmann, J, Zhang, Z, White, N, Rosenzweig, J, Fedarko, N, Jagannath, S, Canto, MI, Yeo, CJ, Chan, DW, Goggins, M 2004Serum diagnosis of pancreatic adenocarcinoma using surface-enhanced laser desorption and ionization mass spectrometryClin Cancer Res10860868PubMedGoogle Scholar
  31. Klein, P, Glaser, E, Grogan, L, Keane, M, Lipkowitz, S, Soballe, P, Brooks, L, Jenkins, J, Steinberg, SM, DeMarini, DM, Kirsch, I 2001Biomarker assays in nipple aspirate fluidBreast J7378387PubMedGoogle Scholar
  32. Sauter, ER, Zhu, W, Fan, XJ, Wassell, RP, Chervoneva, I, Bois, GC 2002Proteomic analysis of nipple aspirate fluid to detect biologic markers of breast cancerBr J Cancer8614401443PubMedGoogle Scholar
  33. Diamandis, EP 2003Point: proteomic patterns in biological fluids: do they represent the future of cancer diagnosticsClin Chem4912721275PubMedGoogle Scholar
  34. Fung, ET, Enderwick, C 2002ProteinChip clinical proteomics: computational challenges and solutions.Biotechniques Suppl34–384031Google Scholar
  35. Shiwa, M, Nishimura, Y, Wakatabe, R, Fukawa, A, Arikuni, H, Ota, H, Kato, Y, Yamorib, T 2003Rapid discovery and identification of a tissue-specific tumor biomarker from 39 human cancer cell lines using the SELDI ProteinChip platformBiochem Biophys Res Commun3091825PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Timothy M. Pawlik
    • 1
  • Herbert Fritsche
    • 2
  • Kevin R. Coombes
    • 3
  • Lianchun Xiao
    • 3
  • Savitri Krishnamurthy
    • 4
  • Kelly K. Hunt
    • 1
  • Lajos Pusztai
    • 5
  • Jeng-Neng Chen
    • 6
  • Charlotte H. Clarke
    • 7
  • Banu Arun
    • 5
  • Mien-Chie Hung
    • 6
  • Henry M. Kuerer
    • 1
  1. 1.Department of Surgical Oncology, Unit 444The University of TexasHoustonUSA
  2. 2.Department of Laboratory MedicineThe University of TexasHouston
  3. 3.Department of BiostatisticsThe University of TexasHouston
  4. 4.Department of PathologyThe University of TexasHouston
  5. 5.Department of Breast Medical OncologyThe University of TexasHouston
  6. 6.Department of Molecular and Cellular OncologyThe University of Texas M. D. Anderson Cancer CenterHouston
  7. 7.Ciphergen Biosystems, Inc.FremontUSA

Personalised recommendations