Skip to main content
Log in

Exploring the Correlation Between M/EEG Source–Space and fMRI Networks at Rest

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Magneto/electro-encephalography (M/EEG) source connectivity is an emerging approach to estimate brain networks with high temporal and spatial resolutions. Here, we aim to evaluate the effect of functional connectivity (FC) methods on the correlation between M/EEG source–space and fMRI networks at rest. Two main FC families are tested: (i) FC methods that do not remove zero-lag connectivity including Phase Locking Value (PLV) and Amplitude Envelope Correlation (AEC) and (ii) FC methods that remove zero-lag connections such as Phase Lag Index (PLI) and two orthogonalisation approaches combined with PLV (PLVCol, PLVPas) and AEC (AECCol, AECPas). Methods are evaluated on resting state M/EEG signals recorded from healthy participants at rest (N = 74). Networks obtained by each FC method are compared with fMRI networks (obtained from the Human Connectome Project). Results show low correlations for all FC methods, however PLV and AEC networks are significantly correlated with fMRI networks (ρ = 0.12, p = 1.93 × 10–8 and ρ = 0.06, p = 0.007, respectively), while other methods are not. These observations are consistent for all M/EEG frequency bands and for different FC matrices threshold. Our main message is to be careful in selecting FC methods when comparing or combining M/EEG with fMRI. We consider that more comparative studies based on simulation and real data and at different levels (node, module or sub networks) are still needed in order to improve our understanding on the relationships between M/EEG source–space networks and fMRI networks at rest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bastos AM, Schoffelen J-M (2016) A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Front Syst Neurosci 9:175

    PubMed  PubMed Central  Google Scholar 

  • Brookes MJ, Gibson AM, Hall SD, Furlong PL, Barnes GR, Hillebrand A, Singh KD, Holliday IE, Francis ST, Morris PG (2004) A general linear model for MEG beamformer imaging. NeuroImage 23(3):936–946

    PubMed  Google Scholar 

  • Brookes MJ, Woolrich M, Luckhoo H, Price D, Hale JR, Stephenson MC, Barnes GR, Smith SM, Morris PG (2011) Investigating the electrophysiological basis of resting state networks using magnetoencephalography. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1112685108

    Article  PubMed  PubMed Central  Google Scholar 

  • Brookes MJ, Woolrich MW, Barnes GR (2012) Measuring functional connectivity in MEG: a multivariate approach insensitive to linear source leakage. Neuroimage 63(2):910–920

    CAS  PubMed  Google Scholar 

  • Carp J (2012) On the plurality of (methodological) worlds: estimating the analytic flexibility of fMRI experiments. Front Neurosci 6:149

    PubMed  PubMed Central  Google Scholar 

  • Chu CJ, Kramer MA, Pathmanathan J, Bianchi MT, Westover MB, Wizon L, Cash SS (2012) Emergence of stable functional networks in long-term human electroencephalography. J Neurosci 32(8):2703–2713

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colclough GL, Brookes MJ, Smith SM, Woolrich MW (2015) A symmetric multivariate leakage correction for MEG connectomes. NeuroImage 117:439–448

    CAS  PubMed  Google Scholar 

  • Colclough GL, Woolrich MW, Tewarie P, Brookes MJ, Quinn AJ, Smith SM (2016) How reliable are MEG resting-state connectivity metrics? Neuroimage 138:284–293

    CAS  PubMed  Google Scholar 

  • de Pasquale F, Della Penna S, Snyder AZ, Marzetti L, Pizzella V, Romani GL, Corbetta M (2012) A cortical core for dynamic integration of functional networks in the resting human brain. Neuron 74(4):753–764

    PubMed  PubMed Central  Google Scholar 

  • De Vico Fallani F, Richiardi J, Chavez M, Achard S (2014) Graph analysis of functional brain networks: practical issues in translational neuroscience. Philos Trans R Soc B 369(1653):20130521

    Google Scholar 

  • Demuru M, La Cava SM, Pani SM, Fraschini M (2020) A comparison between power spectral density and network metrics: an EEG study. Biomed Signal Process Control 57:101760

    Google Scholar 

  • Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3):968–980

    PubMed  Google Scholar 

  • Finger H, Bonstrup M, Cheng B, Messe A, Hilgetag C, Thomalla G, Gerloff C, Konig P (2016) Modeling of large-scale functional brain networks based on structural connectivity from DTI: comparison with EEG derived phase coupling networks and evaluation of alternative methods along the modeling path. PLoS Comput Biol 12(8):e1005025

    PubMed  PubMed Central  Google Scholar 

  • Fraschini M, Demuru M, Crobe A, Marrosu F, Stam CJ, Hillebrand A (2016) The effect of epoch length on estimated EEG functional connectivity and brain network organisation. J Neural Eng 13(3):036015

    PubMed  Google Scholar 

  • Garrison KA, Scheinost D, Finn ES, Shen X, Constable RT (2015) The (in) stability of functional brain network measures across thresholds. Neuroimage 118:651–661

    PubMed  Google Scholar 

  • Gollo LL, Mirasso C, Sporns O, Breakspear M (2014) Mechanisms of zero-lag synchronization in cortical motifs. PLoS Comput Biol 10(4):e1003548

    PubMed  PubMed Central  Google Scholar 

  • Gramfort A, Olivi E, Clerc M, Papadopoulo T (2010) OpenMEEG: opensource software for quasistatic bioelectromagnetics. Biomed Eng Online 9(1):45

    PubMed  PubMed Central  Google Scholar 

  • Gramfort A, Kowalski M, Hämäläinen M (2012) Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods. Phys Med Biol 57(7):1937

    PubMed  PubMed Central  Google Scholar 

  • Hardmeier M, Hatz F, Bousleiman H, Schindler C, Stam CJ, Fuhr P (2014) Reproducibility of functional connectivity and graph measures based on the phase lag index (PLI) and weighted phase lag index (wPLI) derived from high resolution EEG. PLoS ONE 9(10):e108648

    PubMed  PubMed Central  Google Scholar 

  • Hassan M, Wendling F (2018) Electroencephalography source connectivity: aiming for high resolution of brain networks in time and space. IEEE Signal Process Mag 35(3):81–96

    Google Scholar 

  • Hassan M, Dufor O, Merlet I, Berrou C, Wendling F (2014) EEG source connectivity analysis: from dense array recordings to brain networks. PLoS ONE 9(8):e105041

    PubMed  PubMed Central  Google Scholar 

  • Hassan M, Benquet P, Biraben A, Berrou C, Dufor O, Wendling F (2015) Dynamic reorganization of functional brain networks during picture naming. Cortex 73:276–288

    PubMed  Google Scholar 

  • Hassan M, Merlet I, Mheich A, Kabbara A, Biraben A, Nica A, Wendling F (2016) Identification of interictal epileptic networks from dense-EEG. Brain Topogr 30:60–76

    PubMed  Google Scholar 

  • Hauk O (2004) Keep it simple: a case for using classical minimum norm estimation in the analysis of EEG and MEG data. Neuroimage 21(4):1612–1621

    PubMed  Google Scholar 

  • Hipp JF, Hawellek DJ, Corbetta M, Siegel M, Engel AK (2012) Large-scale cortical correlation structure of spontaneous oscillatory activity. Nat Neurosci 15(6):884

    CAS  PubMed  Google Scholar 

  • Holmes CJ, Hoge R, Collins L, Woods R, Toga AW, Evans AC (1998) Enhancement of MR images using registration for signal averaging. J Comput Assist Tomogr 22(2):324–333

    CAS  PubMed  Google Scholar 

  • Kabbara A, Falou WE, Khalil M, Wendling F, Hassan M (2017) The dynamic functional core network of the human brain at rest. Sci Rep 7:1–6

    CAS  Google Scholar 

  • Lachaux J-P, Rodriguez E, Martinerie J, Varela FJ (1999) Measuring phase synchrony in brain signals. Hum Brain Mapp 8(4):194–208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lachaux J-P, Rodriguez E, Le Van Quyen M, Lutz A, Martinerie J, Varela FJ (2000) Studying single-trials of phase synchronous activity in the brain. Int J Bifurcation Chaos 10(10):2429–2439

    Google Scholar 

  • Liu Q, Ganzetti M, Wenderoth N, Mantini D (2018) Detecting large-scale brain networks using EEG: impact of electrode density, head modeling and source localization. Front Neuroinform 12:4

    PubMed  PubMed Central  Google Scholar 

  • Liuzzi L, Gascoyne LE, Tewarie PK, Barratt EL, Boto E, Brookes MJ (2017) Optimising experimental design for MEG resting state functional connectivity measurement. Neuroimage 155:565–576

    PubMed  Google Scholar 

  • Mahjoory K, Nikulin VV, Botrel L, Linkenkaer-Hansen K, Fato MM, Haufe S (2017) Consistency of EEG source localization and connectivity estimates. Neuroimage 152:590–601

    PubMed  Google Scholar 

  • Maldjian JA, Davenport EM, Whitlow CT (2014) Graph theoretical analysis of resting-state MEG data: Identifying interhemispheric connectivity and the default mode. Neuroimage 96:88–94

    PubMed  Google Scholar 

  • Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M (2007) Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci USA 104(32):13170–13175

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mehrkanoon S, Breakspear M, Britz J, Boonstra TW (2014) Intrinsic coupling modes in source-reconstructed electroencephalography. Brain Connect 4:10

    Google Scholar 

  • Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M (2004) Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol 115(10):2292–2307

    PubMed  Google Scholar 

  • O'Neill GC, Tewarie P, Vidaurre D, Liuzzi L, Woolrich MW, Brookes MJ (2018) Dynamics of large-scale electrophysiological networks: a technical review. Neuroimage 180:559–576

    PubMed  Google Scholar 

  • Palva S, Palva JM (2012) Discovering oscillatory interaction networks with M/EEG: challenges and breakthroughs. Trends Cognit Sci 16(4):219–230

    Google Scholar 

  • Palva JM, Wang SH, Palva S, Zhigalov A, Monto S, Brookes MJ, Schoffelen J-M, Jerbi K (2018) Ghost interactions in MEG/EEG source space: a note of caution on inter-areal coupling measures. Neuroimage 173:632–643

    PubMed  Google Scholar 

  • Pascual-Marqui RD, Biscay RJ, Bosch-Bayard J, Faber P, Kinoshita T, Kochi K, Milz P, Nishida K, Yoshimura M (2017) Innovations orthogonalization: a solution to the major pitfalls of EEG/MEG leakage correction. arXiv:1708.05931

  • Rizkallah J, Benquet P, Kabbara A, Dufor O, Wendling F, Hassan M (2018) Dynamic reshaping of functional brain networks during visual object recognition. J Neural Eng 15(5):056022

    CAS  PubMed  Google Scholar 

  • Roelfsema PR, Engel AK, König P, Singer W (1997) Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385(6612):157

    CAS  PubMed  Google Scholar 

  • Sadaghiani S, Wirsich J (2019) Intrinsic connectome organization across temporal scales: new insights from cross-modal approaches. Netw Neurosci. https://doi.org/10.1162/netn_a_00114

    Article  Google Scholar 

  • Sakkalis V (2011) Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Comput Biol Med 41(12):1110–1117

    CAS  PubMed  Google Scholar 

  • Schoffelen JM, Gross J (2009) Source connectivity analysis with MEG and EEG. Hum Brain Mapp 30(6):1857–1865

    PubMed  PubMed Central  Google Scholar 

  • Stam CJ, Nolte G, Daffertshofer A (2007) Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum Brain Mapp 28(11):1178–1193

    PubMed  PubMed Central  Google Scholar 

  • Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM (2011) Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci 2011:8

    Google Scholar 

  • van den Heuvel MP, Scholtens LH, de Reus MA, Kahn RS (2016) Associated microscale spine density and macroscale connectivity disruptions in schizophrenia. Biol Psychiatry 80(4):293–301

    PubMed  Google Scholar 

  • Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E, Ugurbil K, WU-Minn HCP Consortium (2013) The WU-Minn human connectome project: an overview. Neuroimage 80:62–79

    PubMed  Google Scholar 

  • Viriyopase A, Bojak I, Zeitler M, Gielen S (2012) When long-range zero-lag synchronization is feasible in cortical networks. Front Comput Neurosci. https://doi.org/10.3389/fncom.2012.00049

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang SH, Lobier M, Siebenhühner F, Puoliväli T, Palva S, Palva JM (2018) Hyperedge bundling: a practical solution to spurious interactions in MEG/EEG source connectivity analyses. NeuroImage 173:610–622

    PubMed  Google Scholar 

  • Wilcox RR (2016) Comparing dependent robust correlations. Br J Math Stat Psychol 69(3):215–224

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Future Emerging Technologies (H2020-FETOPEN-2014-2015-RIA under agreement No. 686764) as part of the European Union’s Horizon 2020 research and training program 2014–2018. This work has received a French government support granted to the CominLabs excellence laboratory and managed by the National Research Agency in the “Investing for the Future” program under reference ANR-10-LABX-07-01. This work was also financed by the AZM and SAADE Association, Tripoli, Lebanon and by the National Council for Scientific Research (CNRS) in Lebanon. Authors would like to thank Campus France, Programme Hubert Curien CEDRE (PROJECT No. 42257YA), for supporting this study. HCP data was provided by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University. Authors would like to thank Olivier Dufor for collecting the EEG data and Martijn Van Den Heuvel for providing the fMRI connectivity matrices from the human connectome project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Rizkallah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Christoph M. Michel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 19599 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizkallah, J., Amoud, H., Fraschini, M. et al. Exploring the Correlation Between M/EEG Source–Space and fMRI Networks at Rest. Brain Topogr 33, 151–160 (2020). https://doi.org/10.1007/s10548-020-00753-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-020-00753-w

Keywords

Navigation