Advertisement

Towards a Universal Taxonomy of Macro-scale Functional Human Brain Networks

  • Lucina Q. UddinEmail author
  • B. T. Thomas Yeo
  • R. Nathan SprengEmail author
Review

Abstract

The past decade has witnessed a proliferation of studies aimed at characterizing the human connectome. These projects map the brain regions comprising large-scale systems underlying cognition using non-invasive neuroimaging approaches and advanced analytic techniques adopted from network science. While the idea that the human brain is composed of multiple macro-scale functional networks has been gaining traction in cognitive neuroscience, the field has yet to reach consensus on several key issues regarding terminology. What constitutes a functional brain network? Are there “core” functional networks, and if so, what are their spatial topographies? What naming conventions, if universally adopted, will provide the most utility and facilitate communication amongst researchers? Can a taxonomy of functional brain networks be delineated? Here we survey the current landscape to identify six common macro-scale brain network naming schemes and conventions utilized in the literature, highlighting inconsistencies and points of confusion where appropriate. As a minimum recommendation upon which to build, we propose that a scheme incorporating anatomical terminology should provide the foundation for a taxonomy of functional brain networks. A logical starting point in this endeavor might delineate systems that we refer to here as “occipital”, “pericentral”, “dorsal frontoparietal”, “lateral frontoparietal”, “midcingulo-insular”, and “medial frontoparietal” networks. We posit that as the field of network neuroscience matures, it will become increasingly imperative to arrive at a taxonomy such as that proposed here, that can be consistently referenced across research groups.

Keywords

Coactivation Functional connectivity Human connectome Network neuroscience 

Notes

Acknowledgements

LQU is supported by the National Institute of Mental Health (R01MH107549), the Canadian Institute for Advanced Research, and a University of Miami Gabelli Senior Scholar Award. RNS is supported by the Natural Sciences and Engineering Research Council of Canada and Canadian Institutes of Health Research, and is a Research Scholar supported by Fonds de recherche du Québec – Santé. BTTY is supported by the Singapore National Research Foundation (NRF) Fellowship (Class of 2017). The authors gratefully acknowledge Roberto Toro and Evan Gordan for assistance with figures.

References

  1. Allen EA, Damaraju E, Plis SM et al (2014) Tracking whole-brain connectivity dynamics in the resting state. Cereb Cortex 24:663–676PubMedCrossRefGoogle Scholar
  2. Andrews-Hanna JR, Reidler JS, Sepulcre J et al (2010) Functional-anatomic fractionation of the brain’s default network. Neuron 65:550–562PubMedPubMedCentralCrossRefGoogle Scholar
  3. Andrews-Hanna JR, Smallwood J, Spreng RN (2014) The default network and self-generated thought: component processes, dynamic control, and clinical relevance. Ann N Y Acad Sci 1316:29–52PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bar M, Aminoff E, Mason M, Fenske M (2007) The units of thought. Hippocampus 17:420–428PubMedCrossRefGoogle Scholar
  5. Barrett LF, Satpute AB (2013) Large-scale brain networks in affective and social neuroscience: towards an integrative functional architecture of the brain. Curr Opin Neurobiol. 23:361–372PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bassett DS, Sporns O (2017) Network neuroscience. Nat Neurosci 20:353–364PubMedPubMedCentralCrossRefGoogle Scholar
  7. Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B 360:1001–1013CrossRefGoogle Scholar
  8. Benoit RG, Schacter DL (2015) Specifying the core network supporting episodic simulation and episodic memory by activation likelihood estimation. Neuropsychologia 75:450–457PubMedPubMedCentralCrossRefGoogle Scholar
  9. Betzel RF, Bassett DS (2017) Multi-scale brain networks. Neuroimage 160:73–83PubMedCrossRefGoogle Scholar
  10. Bijsterbosch JD, Woolrich MW, Glasser MF et al (2018) The relationship between spatial configuration and functional connectivity of brain regions. eLife.  https://doi.org/10.7554/eLife.32992 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Binder JR, Desai RH, Graves WW, Conant LL (2009) Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex 19:2767–2796PubMedPubMedCentralCrossRefGoogle Scholar
  12. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541PubMedCrossRefGoogle Scholar
  13. Bolt T, Nomi JS, Rubinov M, Uddin LQ (2017a) Correspondence between evoked and intrinsic functional brain network configurations. Hum Brain Mapp 38:1992–2007PubMedCrossRefGoogle Scholar
  14. Bolt T, Nomi JS, Yeo BTT, Uddin LQ (2017b) Data-Driven extraction of a nested model of human brain function. J Neurosci 37:7263–7277PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bolt T, Nomi JS, Bainter SA et al (2019) The situation or the person? Individual and task-evoked differences in BOLD activity. Hum Brain Mapp 40:2943–2954PubMedGoogle Scholar
  16. Braga RM, Buckner RL (2017) Parallel interdigitated distributed networks within the individual estimated by intrinsic functional connectivity. Neuron 95:457–471.e5PubMedPubMedCentralCrossRefGoogle Scholar
  17. Braga RM, Van Dijk KRA, Polimeni JR et al (2019) Parallel distributed networks resolved at high resolution reveal close juxtaposition of distinct regions. J Neurophysiol 121:1513–1534PubMedPubMedCentralCrossRefGoogle Scholar
  18. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38PubMedCrossRefGoogle Scholar
  19. Buckner RL, Krienen FM, Castellanos A et al (2011) The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol 106:2322–2345PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chang C, Glover GH (2010) Time-frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage 50:81–98PubMedCrossRefGoogle Scholar
  21. Choi EY, Yeo BTT, Buckner RL (2012) The organization of the human striatum estimated by intrinsic functional connectivity. J Neurophysiol 108:2242–2263PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chong M, Bhushan C, Joshi AA et al (2017) Individual parcellation of resting fMRI with a group functional connectivity prior. Neuroimage 156:87–100PubMedPubMedCentralCrossRefGoogle Scholar
  23. Christoff K, Irving ZC, Fox KCR et al (2016) Mind-wandering as spontaneous thought: a dynamic framework. Nat Rev Neurosci 17:718–731PubMedCrossRefGoogle Scholar
  24. Ciric R, Nomi JS, Uddin LQ, Satpute AB (2017) Contextual connectivity: a framework for understanding the intrinsic dynamic architecture of large-scale functional brain networks. Sci Rep 7:6537PubMedPubMedCentralCrossRefGoogle Scholar
  25. Cole MW, Reynolds JR, Power JD et al (2013) Multi-task connectivity reveals flexible hubs for adaptive task control. Nat Neurosci 16:1348–1355PubMedPubMedCentralCrossRefGoogle Scholar
  26. Cole MW, Bassett DS, Power JD et al (2014) Intrinsic and task-evoked network architectures of the human brain. Neuron 83:238–251PubMedPubMedCentralCrossRefGoogle Scholar
  27. Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18:192–205PubMedCrossRefGoogle Scholar
  28. Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215PubMedPubMedCentralCrossRefGoogle Scholar
  29. Corbetta M, Shulman GL (2011) Spatial neglect and attention networks. Annu Rev Neurosci 34:569–599PubMedPubMedCentralCrossRefGoogle Scholar
  30. Corbetta M, Patel G, Shulman GL (2008) The reorienting system of the human brain: from environment to theory of mind. Neuron 58:306–324PubMedPubMedCentralCrossRefGoogle Scholar
  31. Cui Z, Li H, Xia CH, et al (2019) Individual variation in control network topography supports executive function in youthGoogle Scholar
  32. Damoiseaux JS, Rombouts SA, Barkhof F et al (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103:13848–13853PubMedCrossRefGoogle Scholar
  33. De Luca M, Beckmann CF, De Stefano N et al (2006) fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29:1359–1367PubMedCrossRefGoogle Scholar
  34. Dixon ML, Andrews-Hanna JR, Spreng RN et al (2017) Interactions between the default network and dorsal attention network vary across default subsystems, time, and cognitive states. Neuroimage 147:632–649PubMedCrossRefGoogle Scholar
  35. Dixon ML, De La Vega A, Mills C et al (2018) Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks. Proc Natl Acad Sci USA 115(7):E1598–E1607PubMedCrossRefGoogle Scholar
  36. Dohmatob E, Dumas G, Bzdok D (2018) Dark control: towards a unified account of default mode function by Markov decision processesGoogle Scholar
  37. Dosenbach NU, Fair DA, Miezin FM et al (2007) Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci USA 104:11073–11078PubMedCrossRefGoogle Scholar
  38. Dosenbach NU, Fair DA, Cohen AL et al (2008) A dual-networks architecture of top-down control. Trends Cogn Sci 12:99–105PubMedPubMedCentralCrossRefGoogle Scholar
  39. Doucet GE, Lee WH, Frangou S (2019) Evaluation of the spatial variability in the major resting-state networks across human brain functional atlases. Hum Brain Mapp 40:4577–4587PubMedPubMedCentralCrossRefGoogle Scholar
  40. Duncan J (2010) The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends Cogn Sci 14:172–179PubMedCrossRefGoogle Scholar
  41. Eickhoff SB, Constable RT, Yeo BTT (2018a) Topographic organization of the cerebral cortex and brain cartography. Neuroimage 170:332–347PubMedCrossRefGoogle Scholar
  42. Eickhoff SB, Yeo BTT, Genon S (2018b) Imaging-based parcellations of the human brain. Nat Rev Neurosci 19:672–686PubMedCrossRefGoogle Scholar
  43. Farrant K, Uddin LQ (2015) Asymmetric development of dorsal and ventral attention networks in the human brain. Dev Cogn Neurosci 12:165–174PubMedPubMedCentralCrossRefGoogle Scholar
  44. Fedorenko E, Duncan J, Kanwisher N (2013) Broad domain generality in focal regions of frontal and parietal cortex. Proc Natl Acad Sci USA 110:16616–16621PubMedCrossRefGoogle Scholar
  45. Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47PubMedCrossRefGoogle Scholar
  46. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711PubMedCrossRefGoogle Scholar
  47. Fox MD, Snyder AZ, Vincent JL et al (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102:9673–9678PubMedPubMedCentralCrossRefGoogle Scholar
  48. Fox MD, Corbetta M, Snyder AZ et al (2006) Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci USA 103:10046–10051PubMedCrossRefGoogle Scholar
  49. Friston K (1994) Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 2:56–78CrossRefGoogle Scholar
  50. Glasser MF, Coalson TS, Robinson EC et al (2016) A multi-modal parcellation of human cerebral cortex. Nature 536:171–178PubMedPubMedCentralCrossRefGoogle Scholar
  51. Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25PubMedCrossRefGoogle Scholar
  52. Gordon EM, Laumann TO, Adeyemo B et al (2017a) Individual-specific features of brain systems identified with resting state functional correlations. NeuroImage 146:918–939PubMedCrossRefGoogle Scholar
  53. Gordon EM, Laumann TO, Adeyemo B, Petersen SE (2017b) Individual variability of the system-level organization of the human brain. Cereb Cortex 27:386–399PubMedGoogle Scholar
  54. Gordon EM, Laumann TO, Gilmore AW et al (2017c) Precision functional mapping of individual human brains. Neuron 95:791–807.e7PubMedPubMedCentralCrossRefGoogle Scholar
  55. Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100:253–258PubMedCrossRefGoogle Scholar
  56. Harrison SJ, Woolrich MW, Robinson EC et al (2015) Large-scale probabilistic functional modes from resting state fMRI. Neuroimage 109:217–231PubMedPubMedCentralCrossRefGoogle Scholar
  57. Haxby JV, Horwitz B, Ungerleider LG et al (1994) The functional organization of human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations. J Neurosci 14:6336–6353PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hayama HR, Vilberg KL, Rugg MD (2012) Overlap between the neural correlates of cued recall and source memory: evidence for a generic recollection network? J Cogn Neurosci 24:1127–1137PubMedPubMedCentralCrossRefGoogle Scholar
  59. Hindriks R, Adhikari MH, Murayama Y et al (2016) Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI? Neuroimage 127:242–256PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hugdahl K, Raichle ME, Mitra A, Specht K (2015) On the existence of a generalized non-specific task-dependent network. Front Hum Neurosci 9:430PubMedPubMedCentralCrossRefGoogle Scholar
  61. Hutchison RM, Womelsdorf T, Allen EA et al (2013) Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80:360–378PubMedCrossRefGoogle Scholar
  62. Ji JL, Spronk M, Kulkarni K et al (2019) Mapping the human brain’s cortical-subcortical functional network organization. Neuroimage 185:35–57PubMedCrossRefGoogle Scholar
  63. Kam JWY, Lin JJ, Solbakk A-K et al (2019) Default network and frontoparietal control network theta connectivity supports internal attention. Nat Hum Behav.  https://doi.org/10.1038/s41562-019-0717-0 CrossRefPubMedGoogle Scholar
  64. Kennedy DP, Adolphs R (2012) The social brain in psychiatric and neurological disorders. Trends Cogn Sci 16:559–572PubMedPubMedCentralCrossRefGoogle Scholar
  65. Kiviniemi V, Starck T, Remes J et al (2009) Functional segmentation of the brain cortex using high model order group PICA. Hum Brain Mapp 30:3865–3886PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kong R, Li J, Orban C et al (2019) Spatial topography of individual-specific cortical networks predicts human cognition, personality, and emotion. Cereb Cortex 29:2533–2551PubMedCrossRefGoogle Scholar
  67. Krienen FM, Yeo BTT, Buckner RL (2014) Reconfigurable task-dependent functional coupling modes cluster around a core functional architecture. Philos Trans R Soc B 369:20130526CrossRefGoogle Scholar
  68. Kucyi A, Hodaie M, Davis KD (2012) Lateralization in intrinsic functional connectivity of the temporoparietal junction with salience- and attention-related brain networks. J Neurophysiol 108:3382–3392PubMedCrossRefGoogle Scholar
  69. Laird AR, Fox PM, Eickhoff SB et al (2011) Behavioral interpretations of intrinsic connectivity networks. J Cogn Neurosci 23:4022–4037PubMedPubMedCentralCrossRefGoogle Scholar
  70. Laumann TO, Gordon EM, Adeyemo B et al (2015) Functional system and areal organization of a highly sampled individual human brain. Neuron 87:657–670PubMedPubMedCentralCrossRefGoogle Scholar
  71. Laumann TO, Snyder AZ, Mitra A et al (2017) On the stability of BOLD fMRI correlations. Cereb Cortex 27:4719–4732PubMedGoogle Scholar
  72. Li J, Bolt T, Bzdok D et al (2019a) Topography and behavioral relevance of the global signal in the human brain. Sci Rep 9:14286PubMedPubMedCentralCrossRefGoogle Scholar
  73. Li M, Wang D, Ren J et al (2019b) Performing group-level functional image analyses based on homologous functional regions mapped in individuals. PLoS Biol 17:e2007032PubMedPubMedCentralCrossRefGoogle Scholar
  74. Liégeois R, Laumann TO, Snyder AZ et al (2017) Interpreting temporal fluctuations in resting-state functional connectivity MRI. Neuroimage 163:437–455PubMedCrossRefGoogle Scholar
  75. Lu J, Liu H, Zhang M et al (2011) Focal pontine lesions provide evidence that intrinsic functional connectivity reflects polysynaptic anatomical pathways. J Neurosci 31:15065–15071PubMedPubMedCentralCrossRefGoogle Scholar
  76. Lurie D, Kessler D, Bassett D et al (2018) On the nature of resting fMRI and time-varying functional connectivityGoogle Scholar
  77. Mar RA (2004) The neuropsychology of narrative: story comprehension, story production and their interrelation. Neuropsychologia 42:1414–1434PubMedCrossRefGoogle Scholar
  78. Mar RA (2011) The neural bases of social cognition and story comprehension. Annu Rev Psychol 62:103–134PubMedCrossRefGoogle Scholar
  79. Margulies DS, Ghosh SS, Goulas A et al (2016) Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc Natl Acad Sci USA 113:12574–12579PubMedCrossRefGoogle Scholar
  80. McIntosh AR (2004) Contexts and catalysts: a resolution of the localization and integration of function in the brain. Neuroinformatics 2:175–182PubMedCrossRefGoogle Scholar
  81. Menon V, Uddin LQ (2010) Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 214:655–667PubMedPubMedCentralCrossRefGoogle Scholar
  82. Mesulam MM (1990) Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol 28:597–613PubMedCrossRefGoogle Scholar
  83. Murphy AC, Bertolero MA, Papadopoulos L et al (2019) Multiscale and multimodal network dynamics underpinning working memoryGoogle Scholar
  84. Mwilambwe-Tshilobo L, Ge T, Chong M et al (2019) Loneliness and meaning in life are reflected in the intrinsic network architecture of the brain. Soc Cogn Affect Neurosci 14:423–433PubMedPubMedCentralCrossRefGoogle Scholar
  85. Ngo GH, Eickhoff SB, Nguyen M et al (2019) Beyond consensus: embracing heterogeneity in curated neuroimaging meta-analysis. Neuroimage 200:142–158PubMedCrossRefGoogle Scholar
  86. Nichols TE, Das S, Eickhoff SB et al (2017) Best practices in data analysis and sharing in neuroimaging using MRI. Nat Neurosci 20:299–303PubMedPubMedCentralCrossRefGoogle Scholar
  87. Niendam TA, Laird AR, Ray KL et al (2012) Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cogn Affect Behav Neurosci 12:241–268PubMedPubMedCentralCrossRefGoogle Scholar
  88. Nomi JS, Farrant K, Damaraju E et al (2016) Dynamic functional network connectivity reveals unique and overlapping profiles of insula subdivisions. Hum Brain Mapp 37:1770–1787PubMedPubMedCentralCrossRefGoogle Scholar
  89. Nomi JS, Schettini E, Broce I et al (2018) Structural connections of functionally defined human insular subdivisions. Cereb Cortex 28:3445–3456PubMedCrossRefGoogle Scholar
  90. Pessoa L (2014) Understanding brain networks and brain organization. Phys Life Rev 11:460–461CrossRefGoogle Scholar
  91. Poldrack RA, Kittur A, Kalar D et al (2011) The cognitive atlas: toward a knowledge foundation for cognitive neuroscience. Front Neuroinformatics 5:17CrossRefGoogle Scholar
  92. Power JD, Cohen AL, Nelson SM et al (2011) Functional network organization of the human brain. Neuron 72:665–678PubMedPubMedCentralCrossRefGoogle Scholar
  93. Preti MG, Van De Ville D (2017) Dynamics of functional connectivity at high spatial resolution reveal long-range interactions and fine-scale organization. Sci Rep 7Google Scholar
  94. Raichle ME, MacLeod AM, Snyder AZ et al (2001) A default mode of brain function. Proc Natl Acad Sci USA 98:676–682PubMedCrossRefGoogle Scholar
  95. Ralph MAL, Lambon Ralph MA, Jefferies E et al (2017) The neural and computational bases of semantic cognition. Nat Rev Neurosci 18:42–55PubMedCrossRefGoogle Scholar
  96. Ray KL, McKay DR, Fox PM et al (2013) ICA model order selection of task co-activation networks. Front Neurosci 7:237PubMedPubMedCentralCrossRefGoogle Scholar
  97. Reid AT, Headley DB, Mill RD et al (2019) Advancing functional connectivity research from association to causation. Nat Neurosci 22:1751–1760CrossRefGoogle Scholar
  98. Roy M, Shohamy D, Wager TD (2012) Ventromedial prefrontal-subcortical systems and the generation of affective meaning. Trends Cogn Sci 16:147–156PubMedPubMedCentralCrossRefGoogle Scholar
  99. Rueter AR, Abram SV, MacDonald AW 3rd et al (2018) The goal priority network as a neural substrate of conscientiousness. Hum Brain Mapp 39:3574–3585PubMedPubMedCentralCrossRefGoogle Scholar
  100. Salehi M, Karbasi A, Shen X et al (2018) An exemplar-based approach to individualized parcellation reveals the need for sex specific functional networks. Neuroimage 170:54–67PubMedCrossRefGoogle Scholar
  101. Schacter DL, Addis DR, Hassabis D et al (2012) The future of memory: remembering, imagining, and the brain. Neuron 76:677–694PubMedCrossRefGoogle Scholar
  102. Seeley WW, Menon V, Schatzberg AF et al (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27:2349–2356PubMedPubMedCentralCrossRefGoogle Scholar
  103. Seitzman BA, Gratton C, Laumann TO et al (2019) Trait-like variants in human functional brain networks. Proc Natl Acad Sci USA.  https://doi.org/10.1073/pnas.1902932116 CrossRefPubMedGoogle Scholar
  104. Sejnowski TJ, Koch C, Churchland PS (1988) Computational neuroscience. Science 241:1299–1306PubMedCrossRefGoogle Scholar
  105. Shulman GL, Fiez JA, Corbetta M et al (1997) Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J Cogn Neurosci 9:648–663PubMedCrossRefGoogle Scholar
  106. Smith SM, Fox PT, Miller KL et al (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA 106:13040–13045PubMedCrossRefGoogle Scholar
  107. Spreng RN (2012) The fallacy of a “task-negative” network. Front Psychol 3:145PubMedPubMedCentralCrossRefGoogle Scholar
  108. Spreng RN, Andrews-Hanna JR (2015) The default network and social cognition. Brain Mapp 3:165–169CrossRefGoogle Scholar
  109. Spreng RN, Mar RA, Kim AS (2009) The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J Cogn Neurosci 21:489–510PubMedCrossRefGoogle Scholar
  110. Spreng RN, Stevens WD, Chamberlain JP et al (2010) Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. Neuroimage 53:303–317PubMedPubMedCentralCrossRefGoogle Scholar
  111. Spreng RN, Schacter DL (2012) Default network modulation and large-scale network interactivity in healthy young and old adults. Cereb Cortex 22:2610–2621PubMedCrossRefGoogle Scholar
  112. Spreng RN, Sepulcre J, Turner GR et al (2013) Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain. J Cogn Neurosci 25:74–86PubMedCrossRefGoogle Scholar
  113. Spreng RN, DuPre E, Selarka D et al (2014) Goal-congruent default network activity facilitates cognitive control. J Neurosci 34:14108–14114PubMedPubMedCentralCrossRefGoogle Scholar
  114. Spunt RP, Lieberman MD (2012) Dissociating modality-specific and supramodal neural systems for action understanding. J Neurosci 32:3575–3583PubMedPubMedCentralCrossRefGoogle Scholar
  115. Sridharan D, Levitin DJ, Menon V (2008) A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci USA 105:12569–12574PubMedCrossRefGoogle Scholar
  116. Stevens WD, Tessler MH et al (2015) Functional connectivity constrains the category-related organization of human ventral occipitotemporal cortex. Hum Brain Mapp 36:2187–2206PubMedPubMedCentralCrossRefGoogle Scholar
  117. Stevens WD, Kravitz DJ et al (2017) Privileged functional connectivity between the visual word form area and the language system. J Neurosci 37:5288–5297PubMedPubMedCentralCrossRefGoogle Scholar
  118. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Theime, New YorkGoogle Scholar
  119. Tamber-Rosenau BJ, Asplund CL, Marois R (2018) Functional dissociation of the inferior frontal junction from the dorsal attention network in top-down attentional control. J Neurophysiol 120:2498–2512PubMedPubMedCentralCrossRefGoogle Scholar
  120. Thakral PP, Wang TH, Rugg MD (2017) Decoding the content of recollection within the core recollection network and beyond. Cortex 91:101–113PubMedCrossRefGoogle Scholar
  121. Toro R, Fox PT, Paus T (2008) Functional coactivation map of the human brain. Cereb Cortex 18:2553–2559PubMedPubMedCentralCrossRefGoogle Scholar
  122. Turner JA, Laird AR (2012) The cognitive paradigm ontology: design and application. Neuroinformatics 10:57–66PubMedPubMedCentralCrossRefGoogle Scholar
  123. Uddin LQ (2014) Dynamic connectivity and dynamic affiliation. Comment on “Understanding brain networks and brain organization” by L. Pessoa. Phys Life Rev 11:460–461PubMedPubMedCentralCrossRefGoogle Scholar
  124. Uddin LQ (2015) Salience processing and insular cortical function and dysfunction. Nat Rev Neurosci 16:55–61PubMedCrossRefGoogle Scholar
  125. Uddin LQ (2016) Salience network of the human brain. Academic Press, CambridgeGoogle Scholar
  126. Uddin LQ, Iacoboni M, Lange C, Keenan JP (2007) The self and social cognition: the role of cortical midline structures and mirror neurons. Trends Cogn Sci 11:153–157PubMedCrossRefGoogle Scholar
  127. Uddin LQ, Kinnison J, Pessoa L, Anderson ML (2014) Beyond the tripartite cognition-emotion-interoception model of the human insular cortex. J Cogn Neurosci 26:16–27PubMedCrossRefGoogle Scholar
  128. Ungerleider LG, Haxby JV (1994) “What”and “where”in the human brain. Curr Opin Neurobiol 4:157–165PubMedCrossRefGoogle Scholar
  129. Urchs S, Armoza J, Moreau C et al (2019) MIST: a multi-resolution parcellation of functional brain networks. MNI Open ResGoogle Scholar
  130. van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31:15775–15786PubMedPubMedCentralCrossRefGoogle Scholar
  131. Van Essen DC, Glasser MF (2018) Parcellating cerebral cortex: how invasive animal studies inform noninvasive mapmaking in humans. Neuron 99:640–663PubMedPubMedCentralCrossRefGoogle Scholar
  132. Van Essen DC, Smith SM, Barch DM et al (2013) The WU-Minn human connectome project: an overview. Neuroimage 80:62–79PubMedPubMedCentralCrossRefGoogle Scholar
  133. Van Overwalle F, Baetens K (2009) Understanding others’ actions and goals by mirror and mentalizing systems: a meta-analysis. Neuroimage 48:564–584PubMedCrossRefGoogle Scholar
  134. Vincent JL, Kahn I, Snyder AZ et al (2008) Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J Neurophysiol 100:3328–3342PubMedPubMedCentralCrossRefGoogle Scholar
  135. Wang D, Buckner RL, Fox MD et al (2015) Parcellating cortical functional networks in individuals. Nat Neurosci 18:1853–1860PubMedPubMedCentralCrossRefGoogle Scholar
  136. Wig GS, Schlaggar BL, Petersen SE (2011) Concepts and principles in the analysis of brain networks. Ann N Y Acad Sci 1224:126–146PubMedCrossRefGoogle Scholar
  137. Wilk HA, Ezekiel F, Morton JB (2012) Brain regions associated with moment-to-moment adjustments in control and stable task-set maintenance. Neuroimage 59:1960–1967PubMedCrossRefGoogle Scholar
  138. Yeo BT, Krienen FM, Sepulcre J et al (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106:1125–1165PubMedPubMedCentralCrossRefGoogle Scholar
  139. Yeo BTT, Krienen FM, Eickhoff SB, Yaakub SN, Fox PT, Buckner RL, Asplund CL, Chee MWL (2016) Functional specialization and flexibility in human association cortex. Cereb Cortex 25:3654–3672CrossRefGoogle Scholar
  140. Zaki J, Wager TD, Singer T et al (2016) The anatomy of suffering: understanding the relationship between nociceptive and empathic pain. Trends Cogn Sci 20:249–259PubMedPubMedCentralCrossRefGoogle Scholar
  141. Zhou Y, Zhao L, Zhou N et al (2019) Predictive big data analytics using the UK Biobank data. Sci Rep 9:6012PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of MiamiCoral GablesUSA
  2. 2.Neuroscience ProgramUniversity of Miami Miller School of MedicineMiamiUSA
  3. 3.Department of Electrical & Computer Engineering, Clinical Imaging Research Centre, Centre for Sleep & Cognition, N.1 Institute for Health & Memory Network ProgramNational University of SingaporeSingaporeSingapore
  4. 4.Laboratory of Brain and Cognition, Department of Neurology and Neurosurgery, Montreal Neurological InstituteMcGill UniversityMontrealCanada
  5. 5.Departments of Psychiatry and PsychologyMcGill UniversityMontrealCanada

Personalised recommendations