Advertisement

Magnetic Resonance Imaging of Human Olfactory Dysfunction

  • Pengfei HanEmail author
  • Yunpeng Zang
  • Joshi Akshita
  • Thomas Hummel
Review

Abstract

Olfactory dysfunctions affect a larger portion of population (up to 15% with partial olfactory loss, and 5% with complete olfactory loss) as compared to other sensory dysfunctions (e.g. auditory or visual) and have a negative impact on the life quality. The impairment of olfactory functions may happen at each stage of the olfactory system, from epithelium to cortex. Non-invasive neuroimaging techniques such as the magnetic resonance imaging (MRI) have advanced the understanding of the advent and progress of olfactory dysfunctions in humans. The current review summarizes recent MRI studies on human olfactory dysfunction to present an updated and comprehensive picture of the structural and functional alterations in the central olfactory system as a consequence of olfactory loss and regain. Furthermore, the review also highlights recent progress on optimizing the olfactory functional MRI as well as new approaches for data processing that are promising for future clinical practice.

Keywords

Olfactory dysfunction MRI technique Central olfactory system Structure Function 

Notes

References

  1. Albrecht J, Kopietz R, Frasnelli J, Wiesmann M, Hummel T, Lundstrom JN (2010) The neuronal correlates of intranasal trigeminal function-an ALE meta-analysis of human functional brain imaging data. Brain Res Rev 62:183–196PubMedGoogle Scholar
  2. Arshamian A, Iannilli E, Gerber JC, Willander J, Persson J, Seo HS, Hummel T, Larsson M (2013) The functional neuroanatomy of odor evoked autobiographical memories cued by odors and words. Neuropsychologia 51:123–131PubMedGoogle Scholar
  3. Atanasova B, Graux J, El Hage W, Hommet C, Camus V, Belzung C (2008) Olfaction: a potential cognitive marker of psychiatric disorders. Neurosci Biobehav Rev 32:1315–1325PubMedGoogle Scholar
  4. Baba T, Kikuchi A, Hirayama K, Nishio Y, Hosokai Y, Kanno S, Hasegawa T, Sugeno N, Konno M, Suzuki K, Takahashi S, Fukuda H, Aoki M, Itoyama Y, Mori E, Takeda A (2012) Severe olfactory dysfunction is a prodromal symptom of dementia associated with Parkinson’s disease: a 3 year longitudinal study. Brain 135:161–169PubMedGoogle Scholar
  5. Bensafi M, Porter J, Pouliot S, Mainland J, Johnson B, Zelano C, Young N, Bremner E, Aframian D, Khan R, Sobel N (2003) Olfactomotor activity during imagery mimics that during perception. Nat Neurosci 6:1142–1144PubMedGoogle Scholar
  6. Bensafi M, Sobel N, Khan RM (2007) Hedonic-specific activity in piriform cortex during odor imagery mimics that during odor perception. J Neurophysiol 98:3254–3262PubMedGoogle Scholar
  7. Bitter T, Bruderle J, Gudziol H, Burmeister HP, Gaser C, Guntinas-Lichius O (2010a) Gray and white matter reduction in hyposmic subjects—a voxel-based morphometry study. Brain Res 1347:42–47PubMedGoogle Scholar
  8. Bitter T, Gudziol H, Burmeister HP, Mentzel HJ, Guntinas-Lichius O, Gaser C (2010b) Anosmia leads to a loss of gray matter in cortical brain areas. Chem Senses 35:407–415PubMedGoogle Scholar
  9. Bramerson A, Johansson L, Ek L, Nordin S, Bende M (2004) Prevalence of olfactory dysfunction: the skovde population-based study. Laryngoscope 114:733–737PubMedGoogle Scholar
  10. Braun JJ, Noblet V, Durand M, Scheidecker S, Zinetti-Bertschy A, Foucher J, Marion V, Muller J, Riehm S, Dollfus H, Kremer S (2014) Olfaction evaluation and correlation with brain atrophy in Bardet-Biedl syndrome. Clin Genet 86:521–529PubMedGoogle Scholar
  11. Buschhuter D, Smitka M, Puschmann S, Gerber JC, Witt M, Abolmaali ND, Hummel T (2008) Correlation between olfactory bulb volume and olfactory function. Neuroimage 42:498–502PubMedGoogle Scholar
  12. Campabadal A, Uribe C, Segura B, Baggio HC, Abos A, Garcia-Diaz AI, Marti MJ, Valldeoriola F, Compta Y, Bargallo N, Junque C (2017) Brain correlates of progressive olfactory loss in Parkinson’s disease. Parkinsonism Relat Disord 41:44–50PubMedGoogle Scholar
  13. Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129:564–583Google Scholar
  14. Croy I, Hummel T (2017) Olfaction as a marker for depression. J Neurol 264:631–638PubMedGoogle Scholar
  15. Croy I, Nordin S, Hummel T (2014) Olfactory disorders and quality of life—an updated review. Chem Senses 39:185–194PubMedGoogle Scholar
  16. Curtis CE, D’Esposito M (2003) Persistent activity in the prefrontal cortex during working memory. Trends Cogn Sci 7:415–423PubMedPubMedCentralGoogle Scholar
  17. Dade LA, Zatorre RJ, Evans AC, Jones-Gotman M (2001) Working memory in another dimension: functional imaging of human olfactory working memory. Neuroimage 14:650–660PubMedGoogle Scholar
  18. Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103:13848–13853Google Scholar
  19. Davatzikos C, Resnick SM, Wu X, Parmpi P, Clark CM (2008) Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI. Neuroimage 41:1220–1227PubMedPubMedCentralGoogle Scholar
  20. de Araujo IE, Rolls ET, Velazco MI, Margot C, Cayeux I (2005) Cognitive modulation of olfactory processing. Neuron 46:671–679PubMedGoogle Scholar
  21. Djordjevic J, Zatorre RJ, Petrides M, Boyle JA, Jones-Gotman M (2005) Functional neuroimaging of odor imagery. Neuroimage 24:791–801PubMedGoogle Scholar
  22. Dwyer DB, Falkai P, Koutsouleris N (2018) Machine learning approaches for clinical psychology and psychiatry. Annu Rev Clin Psychol 14:91–118PubMedGoogle Scholar
  23. Erb K, Bohner G, Harms L, Goektas O, Fleiner F, Dommes E, Schmidt FA, Dahlslett B, Ludemann L (2012) Olfactory function in patients with multiple sclerosis: a diffusion tensor imaging study. J Neurol Sci 316:56–60PubMedGoogle Scholar
  24. Erb-Eigner K, Bohner G, Goektas O, Harms L, Holinski F, Schmidt FA, Dahlslett B, Dommes E, Asbach P, Ludemann L (2014) Tract-based spatial statistics of the olfactory brain in patients with multiple sclerosis. J Neurol Sci 346:235–240PubMedGoogle Scholar
  25. Fernandes HM, Van Hartevelt TJ, Boccard SG, Owen SL, Cabral J, Deco G, Green AL, Fitzgerald JJ, Aziz TZ, Kringelbach ML (2015) Novel fingerprinting method characterises the necessary and sufficient structural connectivity from deep brain stimulation electrodes for a successful outcome. New J Phys 17:015001Google Scholar
  26. Fjaeldstad A, Fernandes HM, Van Hartevelt TJ, Gleesborg C, Moller A, Ovesen T, Kringelbach ML (2017) Brain fingerprints of olfaction: a novel structural method for assessing olfactory cortical networks in health and disease. Sci Rep 7:42534PubMedPubMedCentralGoogle Scholar
  27. Flohr EL, Arshamian A, Wieser MJ, Hummel C, Larsson M, Muhlberger A, Hummel T (2014) The fate of the inner nose: odor imagery in patients with olfactory loss. Neuroscience 268:118–127PubMedGoogle Scholar
  28. Frasnelli J, Hummel T (2005) Olfactory dysfunction and daily life. Eur Arch Otorhinolaryngol 262:231–235PubMedGoogle Scholar
  29. Frasnelli J, Fark T, Lehmann J, Gerber J, Hummel T (2013) Brain structure is changed in congenital anosmia. Neuroimage 83:1074–1080PubMedGoogle Scholar
  30. Frohner JH, Teckentrup V, Smolka MN, Kroemer NB (2019) Addressing the reliability fallacy in fMRI: similar group effects may arise from unreliable individual effects. Neuroimage 195:174–189PubMedGoogle Scholar
  31. Fu CH, Mourao-Miranda J, Costafreda SG, Khanna A, Marquand AF, Williams SC, Brammer MJ (2008) Pattern classification of sad facial processing: toward the development of neurobiological markers in depression. Biol Psychiatry 63:656–662PubMedGoogle Scholar
  32. Gellrich J, Han P, Manesse C, Betz A, Junghanns A, Raue C, Schriever VA, Hummel T (2018) Brain volume changes in hyposmic patients before and after olfactory training. Laryngoscope 128:1531–1536PubMedGoogle Scholar
  33. Georgiopoulos C, Witt ST, Haller S, Dizdar N, Zachrisson H, Engstrom M, Larsson EM (2018) Olfactory fMRI: implications of stimulation length and repetition time. Chem Senses 43:389–398PubMedPubMedCentralGoogle Scholar
  34. Gonzalez J, Barros-Loscertales A, Pulvermuller F, Meseguer V, Sanjuan A, Belloch V, Avila C (2006) Reading cinnamon activates olfactory brain regions. Neuroimage 32:906–912PubMedGoogle Scholar
  35. Gottfried JA (2010) Central mechanisms of odour object perception. Nat Rev Neurosci 11:628–641PubMedPubMedCentralGoogle Scholar
  36. Gottfried JA, Zald DH (2005) On the scent of human olfactory orbitofrontal cortex: meta-analysis and comparison to non-human primates. Brain Res Rev 50:287–304PubMedGoogle Scholar
  37. Gudziol V, Buschhuter D, Abolmaali N, Gerber J, Rombaux P, Hummel T (2009) Increasing olfactory bulb volume due to treatment of chronic rhinosinusitis—a longitudinal study. Brain 132:3096–3101PubMedGoogle Scholar
  38. Gullmar D, Seeliger T, Gudziol H, Teichgraber UKM, Reichenbach JR, Guntinas-Lichius O, Bitter T (2017) Improvement of olfactory function after sinus surgery correlates with white matter properties measured by diffusion tensor imaging. Neuroscience 360:190–196PubMedGoogle Scholar
  39. Haehner A, Hummel T, Hummel C, Sommer U, Junghanns S, Reichmann H (2007) Olfactory loss may be a first sign of idiopathic Parkinson’s disease. Mov Disord 22:839–842PubMedGoogle Scholar
  40. Haehner A, Rodewald A, Gerber JC, Hummel T (2008) Correlation of olfactory function with changes in the volume of the human olfactory bulb. Arch Otolaryngol Head Neck Surg 134:621–624PubMedGoogle Scholar
  41. Hagemeier J, Woodward MR, Rafique UA, Amrutkar CV, Bergsland N, Dwyer MG, Benedict R, Zivadinov R, Szigeti K (2016) Odor identification deficit in mild cognitive impairment and Alzheimer’s disease is associated with hippocampal and deep gray matter atrophy. Psychiatry Res 255:87–93Google Scholar
  42. Han P, Whitcroft KL, Fischer J, Gerber J, Cuevas M, Andrews P, Hummel T (2017) Olfactory brain gray matter volume reduction in patients with chronic rhinosinusitis. Int Forum Allergy Rhinol 7:551–556PubMedGoogle Scholar
  43. Han P, Winkler N, Hummel C, Hahner A, Gerber J, Hummel T (2018a) Alterations of brain gray matter density and olfactory bulb volume in patients with olfactory loss after traumatic brain injury. J Neurotrauma 35:2632–2640PubMedGoogle Scholar
  44. Han P, Winkler N, Hummel C, Hahner A, Gerber J, Hummel T (2018b) Impaired brain response to odors in patients with varied severity of olfactory loss after traumatic brain injury. J Neurol 265:2322–2332PubMedGoogle Scholar
  45. Han P, Croy I, Raue C, Bensafi M, Larsson M, Cavazzana A, Hummel T (2019) Neural processing of odor-associated words: an fMRI study in patients with acquired olfactory loss. Brain Imaging Behav.  https://doi.org/10.1007/s11682-019-00062-2 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Hawkes CH, Shephard BC, Daniel SE (1997) Olfactory dysfunction in Parkinson’s disease. J Neurol Neurosurg Psychiatry 62:436–446PubMedPubMedCentralGoogle Scholar
  47. Henkin RI, Levy LM (2002) Functional MRI of congenital hyposmia: brain activation to odors and imagination of odors and tastes. J Comput Assist Tomogr 26:39–61PubMedGoogle Scholar
  48. Hermundstad AM, Bassett DS, Brown KS, Aminoff EM, Clewett D, Freeman S, Frithsen A, Johnson A, Tipper CM, Miller MB, Grafton ST, Carlson JM (2013) Structural foundations of resting-state and task-based functional connectivity in the human brain. Proc Natl Acad Sci USA 110:6169–6174PubMedGoogle Scholar
  49. Hummel T, Bensafi M, Nikolaus J, Knecht M, Laing DG, Schaal B (2007) Olfactory function in children assessed with psychophysical and electrophysiological techniques. Behav Brain Res 180:133–138PubMedGoogle Scholar
  50. Hummel T, Fliessbach K, Abele M, Okulla T, Reden J, Reichmann H, Wullner U, Haehner A (2010) Olfactory FMRI in patients with Parkinson’s disease. Front Integr Neurosci 4:125PubMedPubMedCentralGoogle Scholar
  51. Hummel T, Urbig A, Huart C, Duprez T, Rombaux P (2015) Volume of olfactory bulb and depth of olfactory sulcus in 378 consecutive patients with olfactory loss. J Neurol 262:1046–1051PubMedGoogle Scholar
  52. Hummel T, Whitcroft KL, Andrews P, Altundag A, Cinghi C, Costanzo RM, Damm M, Frasnelli J, Gudziol H, Gupta N, Haehner A, Holbrook E, Hong SC, Hornung D, Huttenbrink KB, Kamel R, Kobayashi M, Konstantinidis I, Landis BN, Leopold DA, Macchi A, Miwa T, Moesges R, Mullol J, Mueller CA, Ottaviano G, Passali GC, Philpott C, Pinto JM, Ramakrishnan VJ, Rombaux P, Roth Y, Schlosser RA, Shu B, Soler G, Stjarne P, Stuck BA, Vodicka J, Welge-Luessen A (2016) Position paper on olfactory dysfunction. Rhinology 56:1–30PubMedPubMedCentralGoogle Scholar
  53. Iannilli E, Gerber J, Frasnelli J, Hummel T (2007) Intranasal trigeminal function in subjects with and without an intact sense of smell. Brain Res 1139:235–244PubMedGoogle Scholar
  54. Iannilli E, Bitter T, Gudziol H, Burmeister HP, Mentzel HJ, Chopra AP, Hummel T (2011) Differences in anosmic and normosmic group in bimodal odorant perception: a functional-MRI study. Rhinology 49:458–463PubMedPubMedCentralGoogle Scholar
  55. Ibarretxe-Bilbao N, Junque C, Marti MJ, Valldeoriola F, Vendrell P, Bargallo N, Zarei M, Tolosa E (2010) Olfactory impairment in Parkinson’s disease and white matter abnormalities in central olfactory areas: a voxel-based diffusion tensor imaging study. Mov Disord 25:1888–1894PubMedGoogle Scholar
  56. Jones DK, Leemans A (2011) Diffusion tensor imaging. Magn Reson Neuroimaging 711:127–144Google Scholar
  57. Jones DK, Knosche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage 73:239–254PubMedGoogle Scholar
  58. Kareken DA, Sabri M, Radnovich AJ, Claus E, Foresman B, Hector D, Hutchins GD (2004) Olfactory system activation from sniffing: effects in piriform and orbitofrontal cortex. Neuroimage 22:456–465Google Scholar
  59. Karstensen HG, Vestergaard M, Baare WFC, Skimminge A, Djurhuus B, Ellefsen B, Bruggemann N, Klausen C, Leffers AM, Tommerup N, Siebner HR (2018) Congenital olfactory impairment is linked to cortical changes in prefrontal and limbic brain regions. Brain Imaging Behav 12:1569–1582PubMedGoogle Scholar
  60. Kjelvik G, Saltvedt I, White LR, Stenumgard P, Sletvold O, Engedal K, Skatun K, Lyngvaer AK, Steffenach HA, Haberg AK (2014) The brain structural and cognitive basis of odor identification deficits in mild cognitive impairment and Alzheimer’s disease. BMC Neurol 14:168PubMedPubMedCentralGoogle Scholar
  61. Kleinhans NM, Reilly M, Blake M, Greco G, Sweigert J, Davis GE, Velasquez F, Reitz F, Shusterman D, Dager SR (2019) FMRI correlates of olfactory processing in typically-developing school-aged children. Psychiatry Res Neuroimaging 283:67–76PubMedGoogle Scholar
  62. Kloppel S, Stonnington CM, Chu C, Draganski B, Scahill RI, Rohrer JD, Fox NC, Jack CR Jr, Ashburner J, Frackowiak RS (2008) Automatic classification of MR scans in Alzheimer’s disease. Brain 131:681–689PubMedPubMedCentralGoogle Scholar
  63. Koehler L, Fournel A, Albertowski K, Roessner V, Gerber J, Hummel C, Hummel T, Bensafi M (2018) Impaired odor perception in autism spectrum disorder is associated with decreased activity in olfactory cortex. Chem Senses 43:627–634PubMedGoogle Scholar
  64. Kollndorfer K, Fischmeister FP, Kowalczyk K, Hoche E, Mueller CA, Trattnig S, Schopf V (2015a) Olfactory training induces changes in regional functional connectivity in patients with long-term smell loss. Neuroimage Clin 9:401–410PubMedPubMedCentralGoogle Scholar
  65. Kollndorfer K, Jakab A, Mueller CA, Trattnig S, Schopf V (2015b) Effects of chronic peripheral olfactory loss on functional brain networks. Neuroscience 310:589–599PubMedGoogle Scholar
  66. Lavagnino L, Mwangi B, Cao B, Shott ME, Soares JC, Frank GKW (2018) Cortical thickness patterns as state biomarker of anorexia nervosa. Int J Eat Disord 51:241–249PubMedPubMedCentralGoogle Scholar
  67. Lee EY, Eslinger PJ, Du G, Kong L, Lewis MM, Huang X (2014) Olfactory-related cortical atrophy is associated with olfactory dysfunction in Parkinson’s disease. Mov Disord 29:1205–1208PubMedPubMedCentralGoogle Scholar
  68. Levy LM, Henkin RI, Hutter A, Lin CS, Schellinger D (1998) Mapping brain activation to odorants in patients with smell loss by functional MRI. J Comput Assist Tomogr 22:96–103PubMedGoogle Scholar
  69. Levy LM, Henkin RI, Lin CS, Finley A (1999a) Rapid imaging of olfaction by functional MRI (fMRI): identification of presence and type of hyposmia. J Comput Assist Tomogr 23:767–775PubMedGoogle Scholar
  70. Levy LM, Henkin RI, Lin CS, Hutter A, Schellinger D (1999b) Odor memory induces brain activation as measured by functional MRI. J Comput Assist Tomogr 23:487–498PubMedGoogle Scholar
  71. Li W, Howard JD, Gottfried JA (2010) Disruption of odour quality coding in piriform cortex mediates olfactory deficits in Alzheimer’s disease. Brain 133:2714–2726PubMedPubMedCentralGoogle Scholar
  72. Lotsch J, Hummel T, Ultsch A (2016) Machine-learned pattern identification in olfactory subtest results. Sci Rep 6:35688PubMedPubMedCentralGoogle Scholar
  73. Lotsch J, Kringel D, Hummel T (2019) Machine learning in human olfactory research. Chem Senses 44:11–22PubMedGoogle Scholar
  74. Lu J, Wang X, Qing Z, Li Z, Zhang W, Liu Y, Yuan L, Cheng L, Li M, Zhu B, Zhang X, Yang QX, Zhang B (2018) Detectability and reproducibility of the olfactory fMRI signal under the influence of magnetic susceptibility artifacts in the primary olfactory cortex. Neuroimage 178:613–621PubMedGoogle Scholar
  75. Lueken U, Straube B, Yang Y, Hahn T, Beesdo-Baum K, Wittchen HU, Konrad C, Strohle A, Wittmann A, Gerlach AL, Pfleiderer B, Arolt V, Kircher T (2015) Separating depressive comorbidity from panic disorder: a combined functional magnetic resonance imaging and machine learning approach. J Affect Disord 184:182–192PubMedGoogle Scholar
  76. Mandairon N, Linster C (2009) Odor perception and olfactory bulb plasticity in adult mammals. J Neurophysiol 101:2204–2209PubMedGoogle Scholar
  77. Marine N, Boriana A (2014) Olfactory markers of depression and Alzheimer’s disease. Neurosci Biobehav Rev 45:262–270PubMedGoogle Scholar
  78. Mazal PP, Haehner A, Hummel T (2016) Relation of the volume of the olfactory bulb to psychophysical measures of olfactory function. Eur Arch Otorhinolaryngol 273:1–7PubMedGoogle Scholar
  79. McGann JP (2015) Associative learning and sensory neuroplasticity: how does it happen and what is it good for? Learn Mem 22:567–576PubMedPubMedCentralGoogle Scholar
  80. McGann JP (2017) Poor human olfaction is a 19th-century myth. Science 356:597Google Scholar
  81. Miwa T, Furukawa M, Tsukatani T, Costanzo RM, DiNardo LJ, Reiter ER (2001) Impact of olfactory impairment on quality of life and disability. Arch Otolaryngol Head Neck Surg 127:497–503PubMedGoogle Scholar
  82. Moberg PJ, Agrin R, Gur RE, Gur RC, Turetsky BI, Doty RL (1999) Olfactory dysfunction in schizophrenia: a qualitative and quantitative review. Neuropsychopharmacology 21:325–340PubMedGoogle Scholar
  83. Moon WJ, Park M, Hwang M, Kim JK (2018) Functional MRI as an objective measure of olfaction deficit in patients with traumatic anosmia. AJNR Am J Neuroradiol 39:2320–2325PubMedGoogle Scholar
  84. Morrot G, Bonny JM, Lehallier B, Zanca M (2013) fMRI of human olfaction at the individual level: interindividual variability. J Magn Reson Imaging 37:92–100PubMedGoogle Scholar
  85. Mueller A, Abolmaali ND, Hakimi AR, Gloeckler T, Herting B, Reichmann H, Hummel T (2005a) Olfactory bulb volumes in patients with idiopathic Parkinson’s disease a pilot study. J Neural Transm 112:1363–1370PubMedGoogle Scholar
  86. Mueller A, Rodewald A, Reden J, Gerber J, von Kummer R, Hummel T (2005b) Reduced olfactory bulb volume in post-traumatic and post-infectious olfactory dysfunction. NeuroReport 16:475–478PubMedGoogle Scholar
  87. Murphy C, Schubert CR, Cruickshanks KJ, Klein BE, Klein R, Nondahl DM (2002) Prevalence of olfactory impairment in older adults. JAMA 288:2307–2312PubMedGoogle Scholar
  88. Murphy C, Jernigan TL, Fennema-Notestine C (2003) Left hippocampal volume loss in Alzheimer’s disease is reflected in performance on odor identification: a structural MRI study. J Int Neuropsychol Soc 9:459–471PubMedGoogle Scholar
  89. Murphy C, Cerf-Ducastel B, Calhoun-Haney R, Gilbert PE, Ferdon S (2005) ERP, fMRI and functional connectivity studies of brain response to odor in normal aging and Alzheimer’s disease. Chem Senses 30(Suppl 1):i170–171PubMedGoogle Scholar
  90. Nigri A, Ferraro S, D’Incerti L, Critchley HD, Bruzzone MG, Minati L (2013) Connectivity of the amygdala, piriform, and orbitofrontal cortex during olfactory stimulation: a functional MRI study. NeuroReport 24:171–175PubMedGoogle Scholar
  91. Olofsson JK, Gottfried JA (2015) The muted sense: neurocognitive limitations of olfactory language. Trends Cogn Sci 19:314–321PubMedPubMedCentralGoogle Scholar
  92. Pellegrino R, Hahner A, Bojanowski V, Hummel C, Gerber J, Hummel T (2016) Olfactory function in patients with hyposmia compared to healthy subjects—an fMRI study. Rhinology 54:374–381PubMedGoogle Scholar
  93. Pellegrino R, Han P, Reither N, Hummel T (2019) Effectiveness of olfactory training on different severities of posttraumatic loss of smell. Laryngoscope.  https://doi.org/10.1002/lary.27832 CrossRefPubMedGoogle Scholar
  94. Peng P, Gu H, Xiao W, Si LF, Wang JF, Wang SK, Zhai RY, Wei YX (2013) A voxel-based morphometry study of anosmic patients. Br J Radiol 86:20130207PubMedPubMedCentralGoogle Scholar
  95. Plailly J, Delon-Martin C, Royet JP (2012) Experience induces functional reorganization in brain regions involved in odor imagery in perfumers. Hum Brain Mapp 33:224–234PubMedGoogle Scholar
  96. Pomp J, Bestgen AK, Schulze P, Muller CJ, Citron FMM, Suchan B, Kuchinke L (2018) Lexical olfaction recruits olfactory orbitofrontal cortex in metaphorical and literal contexts. Brain Lang 179:11–21PubMedGoogle Scholar
  97. Reichert JL, Schopf V (2017) Olfactory loss and regain: lessons for neuroplasticity. Neuroscientist.  https://doi.org/10.1177/1073858417703910 CrossRefPubMedGoogle Scholar
  98. Reichert JL, Postma EM, Smeets PAM, Boek WM, de Graaf K, Schopf V, Boesveldt S (2018) Severity of olfactory deficits is reflected in functional brain networks—an fMRI study. Hum Brain Mapp 39:3166–3177PubMedGoogle Scholar
  99. Rolls ET (2011) Chemosensory learning in the cortex. Front Syst Neurosci 5:78PubMedPubMedCentralGoogle Scholar
  100. Rombaux P, Mouraux A, Bertrand B, Nicolas G, Duprez T, Hummel T (2006a) Olfactory function and olfactory bulb volume in patients with postinfectious olfactory loss. Laryngoscope 116:436–439PubMedGoogle Scholar
  101. Rombaux P, Mouraux A, Bertrand B, Nicolas G, Duprez T, Hummel T (2006b) Retronasal and orthonasal olfactory function in relation to olfactory bulb volume in patients with posttraumatic loss of smell. Laryngoscope 116:901–905PubMedGoogle Scholar
  102. Rombaux P, Weitz H, Mouraux A, Nicolas G, Bertrand B, Duprez T, Hummel T (2006c) Olfactory function assessed with orthonasal and retronasal testing, olfactory bulb volume, and chemosensory event-related potentials. Arch Otolaryngol Head Neck Surg 132:1346–1351PubMedGoogle Scholar
  103. Rombaux P, Potier H, Bertrand B, Duprez T, Hummel T (2008) Olfactory bulb volume in patients with sinonasal disease. Am J Rhinol 22:598–601PubMedGoogle Scholar
  104. Rombaux P, Potier H, Markessis E, Duprez T, Hummel T (2010) Olfactory bulb volume and depth of olfactory sulcus in patients with idiopathic olfactory loss. Eur Arch Otorhinolaryngol 267:1551–1556PubMedGoogle Scholar
  105. Ross GW, Petrovitch H, Abbott RD, Tanner CM, Popper J, Masaki K, Launer L, White LR (2008) Association of olfactory dysfunction with risk for future Parkinson’s disease. Ann Neurol 63:167–173PubMedGoogle Scholar
  106. Santos DV, Reiter ER, DiNardo LJ, Costanzo RM (2004) Hazardous events associated with impaired olfactory function. Arch Otolaryngol Head Neck Surg 130:317–319PubMedGoogle Scholar
  107. Segura B, Baggio HC, Solana E, Palacios EM, Vendrell P, Bargallo N, Junque C (2013) Neuroanatomical correlates of olfactory loss in normal aged subjects. Behav Brain Res 246:148–153PubMedGoogle Scholar
  108. Seubert J, Freiherr J, Frasnelli J, Hummel T, Lundstrom JN (2013) Orbitofrontal cortex and olfactory bulb volume predict distinct aspects of olfactory performance in healthy subjects. Cereb Cortex 23:2448–2456PubMedGoogle Scholar
  109. Sobel N, Prabhakaran V, Desmond JE, Glover GH, Goode RL, Sullivan EV, Gabrieli JD (1998) Sniffing and smelling: separate subsystems in the human olfactory cortex. Nature 392:282–286Google Scholar
  110. Sobhani S, Rahmani F, Aarabi MH, Sadr AV (2019) Exploring white matter microstructure and olfaction dysfunction in early parkinson disease: diffusion MRI reveals new insight. Brain Imaging Behav 13:210–219PubMedGoogle Scholar
  111. Stevenson RJ (2010) An initial evaluation of the functions of human olfaction. Chem Senses 35:3–20PubMedGoogle Scholar
  112. Su M, Wang S, Fang W, Zhu Y, Li R, Sheng K, Zou D, Han Y, Wang X, Cheng O (2015) Alterations in the limbic/paralimbic cortices of Parkinson’s disease patients with hyposmia under resting-state functional MRI by regional homogeneity and functional connectivity analysis. Parkinsonism Relat Disord 21:698–703PubMedGoogle Scholar
  113. Takeda A, Saito N, Baba T, Kikuchi A, Sugeno N, Kobayashi M, Hasegawa T, Itoyama Y (2010) Functional imaging studies of hyposmia in Parkinson’s disease. J Neurol Sci 289:36–39PubMedGoogle Scholar
  114. Temmel AF, Quint C, Schickinger-Fischer B, Klimek L, Stoller E, Hummel T (2002) Characteristics of olfactory disorders in relation to major causes of olfactory loss. Arch Otolaryngol Head Neck Surg 128:635–641PubMedGoogle Scholar
  115. Tobia MJ, Yang QX, Karunanayaka P (2016) Intrinsic intranasal chemosensory brain networks shown by resting-state functional MRI. NeuroReport 27:527–531PubMedGoogle Scholar
  116. van den Heuvel MP, Hulshoff Pol HE (2010) Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 20:519–534Google Scholar
  117. Van Hartevelt TJ, Kringelbach ML (2011) The olfactory system. In: Mai JK, Paxinos G (eds) The human nervous system. Academic Press, San Diego, pp 1219–1238Google Scholar
  118. Vasavada MM, Wang J, Eslinger PJ, Gill DJ, Sun X, Karunanayaka P, Yang QX (2015) Olfactory cortex degeneration in Alzheimer’s disease and mild cognitive impairment. J Alzheimers Dis 45:947–958PubMedGoogle Scholar
  119. Vasavada MM, Martinez B, Wang J, Eslinger PJ, Gill DJ, Sun X, Karunanayaka P, Yang QX (2017) Central olfactory dysfunction in Alzheimer’s disease and mild cognitive impairment: a functional MRI study. J Alzheimers Dis 59:359–368PubMedGoogle Scholar
  120. Vennemann MM, Hummel T, Berger K (2008) The association between smoking and smell and taste impairment in the general population. J Neurol 255:1121–1126PubMedGoogle Scholar
  121. Vetter NC, Steding J, Jurk S, Ripke S, Mennigen E, Smolka MN (2017) Reliability in adolescent fMRI within two years—a comparison of three tasks. Sci Rep 7:2287PubMedPubMedCentralGoogle Scholar
  122. Wang J, You H, Liu JF, Ni DF, Zhang ZX, Guan J (2011) Association of olfactory bulb volume and olfactory sulcus depth with olfactory function in patients with Parkinson disease. AJNR Am J Neuroradiol 32:677–681PubMedGoogle Scholar
  123. Wang J, Sun X, Yang QX (2014) Methods for olfactory fMRI studies: implication of respiration. Hum Brain Mapp 35:3616–3624PubMedGoogle Scholar
  124. Whitcroft KL, Fischer J, Han P, Raue C, Bensafi M, Gudziol V, Andrews P, Hummel T (2018) Structural plasticity of the primary and secondary olfactory cortices: increased gray matter volume following surgical treatment for chronic rhinosinusitis. Neuroscience 395:22–34PubMedGoogle Scholar
  125. Woo CW, Chang LJ, Lindquist MA, Wager TD (2017) Building better biomarkers: brain models in translational neuroimaging. Nat Neurosci 20:365–377PubMedPubMedCentralGoogle Scholar
  126. Wu X, Yu C, Fan F, Zhang K, Zhu C, Wu T, Li K, Chan P (2011) Correlation between progressive changes in piriform cortex and olfactory performance in early Parkinson’s disease. Eur Neurol 66:98–105PubMedGoogle Scholar
  127. Yoshi A, Han P, Faria V, Hummel T (Unpublished) Top-down processing of olfactory associated information in congenital anosmia: an fMRI studyGoogle Scholar
  128. Yao L, Pinto JM, Yi X, Li L, Peng P, Wei Y (2014) Gray matter volume reduction of olfactory cortices in patients with idiopathic olfactory loss. Chem Senses 39:755–760PubMedPubMedCentralGoogle Scholar
  129. Yao L, Yi X, Pinto JM, Yuan X, Guo Y, Liu Y, Wei Y (2018) Olfactory cortex and olfactory bulb volume alterations in patients with post-infectious olfactory loss. Brain Imaging Behav 12:1355–1362PubMedGoogle Scholar
  130. Yoneyama N, Watanabe H, Kawabata K, Bagarinao E, Hara K, Tsuboi T, Tanaka Y, Ohdake R, Imai K, Masuda M, Hattori T, Ito M, Atsuta N, Nakamura T, Hirayama M, Maesawa S, Katsuno M, Sobue G (2018) Severe hyposmia and aberrant functional connectivity in cognitively normal Parkinson’s disease. PLoS ONE 13:e0190072PubMedPubMedCentralGoogle Scholar
  131. Yousem DM, Geckle RJ, Bilker WB, McKeown DA, Doty RL (1996) Posttraumatic olfactory dysfunction: MR and clinical evaluation. AJNR Am J Neuroradiol 17:1171–1179PubMedPubMedCentralGoogle Scholar
  132. Yousem DM, Geckle RJ, Bilker WB, Doty RL (1998) Olfactory bulb and tract and temporal lobe volumes. Normative data across decades. Ann N Y Acad Sci 855:546–555PubMedGoogle Scholar
  133. Zelano C, Mohanty A, Gottfried JA (2011) Olfactory predictive codes and stimulus templates in piriform cortex. Neuron 72:178–187PubMedPubMedCentralGoogle Scholar
  134. Zhou G, Lane G, Cooper SL, Kahnt T, Zelano C (2019) Characterizing functional pathways of the human olfactory system. Elife 8:e47177PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019
corrected publication 2019

Authors and Affiliations

  1. 1.Faculty of PsychologySouthwest UniversityChongqingChina
  2. 2.Key Laboratory of Cognition and Personality, Ministry of EducationSouthwest UniversityChongqingChina
  3. 3.Department of Otorhinolaryngology, Interdisciplinary Center Smell and TasteTU DresdenDresdenGermany

Personalised recommendations