Altered Oscillatory Responses to Feedback in Borderline Personality Disorder are Linked to Symptom Severity

  • Paul Alexander Schauer
  • Jonas Rauh
  • Gregor Leicht
  • Christina Andreou
  • Christoph MulertEmail author
Original Paper


Several studies using electroencephalography (EEG) demonstrate that the processing of feedback in patients suffering from borderline personality disorder (BPD) is altered in comparison to healthy controls. Differences occur in the theta (ca. 5 Hz) and high-beta frequency-ranges (ca. 20 Hz) of oscillations in response to negative and positive feedback, respectively. However, alpha (ca. 10 Hz) and low-beta (ca. 15 Hz) oscillations have also been shown to be involved in feedback processing. We hypothesized that additional alterations might occur in these frequency ranges in BPD. Eighteen patients with BPD and twenty-two healthy controls performed a gambling task while 64-channel-EEG was recorded. Induced oscillatory responses to positive (i.e. gain) and negative (i.e. loss) feedback in the alpha and low-beta frequency range were investigated. No significant differences were found in the alpha frequency range. Regarding the low-beta frequency range a significant Group (i.e. BPD vs. healthy controls) × Valence (i.e. gain vs. loss) interaction in the time frame between 600 and 700 milliseconds after feedback was found. This effect showed a significant correlation with symptom severity (assessed with the BSL-23). The results indicate that feedback processing in BPD could be more heavily altered than previously expected, with more severe symptomatology being linked to stronger alterations in oscillatory responses to feedback in the low-beta range.


Feedback processing Borderline personality disorder Beta oscillations Symptom severity EEG sLORETA 



Parts of this work were prepared in the context of P Schauers doctoral dissertation at the Faculty of Medicine, University of Hamburg, Germany. Special thanks to Julia Kleinert for her preparatory work.


  1. Andreou C, Kleinert J, Steinmann S, Fuger U, Leicht G, Mulert C (2015) Oscillatory responses to reward processing in borderline personality disorder. World J Biol Psychiatry 16:575–586. CrossRefGoogle Scholar
  2. Andreou C et al (2017) Theta and high-beta networks for feedback processing: a simultaneous EEG-fMRI study in healthy male subjects. Transl Psychiatry 7:e1016. CrossRefGoogle Scholar
  3. Ball JS, Links PS (2009) Borderline personality disorder and childhood trauma: evidence for a causal relationship. Curr Psychiatry Rep 11:63–68CrossRefGoogle Scholar
  4. Bandelow B, Schmahl C, Falkai P, Wedekind D (2010) Borderline personality disorder: a dysregulation of the endogenous opioid system? Psychol Rev 117:623–636. CrossRefGoogle Scholar
  5. Bluschke A, Roessner V, Beste C (2016) Editorial perspective: how to optimise frequency band neurofeedback for ADHD. J Child Psychol Psychiatry 57:457–461. CrossRefGoogle Scholar
  6. Bohus M, Limberger MF, Frank U, Chapman AL, Kuhler T, Stieglitz RD (2007) Psychometric properties of the borderline symptom list (BSL). Psychopathology 40:126–132. CrossRefGoogle Scholar
  7. Bohus M et al (2009) The short version of the borderline symptom list (BSL-23): development and initial data on psychometric properties. Psychopathology 42:32–39CrossRefGoogle Scholar
  8. Cross CP, Cyrenne DL, Brown GR (2013) Sex differences in sensation-seeking: a meta-analysis. Sci Rep 3:2486. CrossRefGoogle Scholar
  9. Delgado MR, Nystrom LE, Fissell C, Noll DC, Fiez JA (2000) Tracking the hemodynamic responses to reward and punishment in the striatum. J Neurophysiol 84:3072–3077. CrossRefGoogle Scholar
  10. Fuchs M, Kastner J, Wagner M, Hawes S, Ebersole JS (2002) A standardized boundary element method volume conductor model. Clin Neurophysiol 113:702–712CrossRefGoogle Scholar
  11. Gehring WJ, Willoughby AR (2002) The medial frontal cortex and the rapid processing of monetary gains and losses. Science 295:2279–2282. CrossRefGoogle Scholar
  12. Grant BF et al (2008) Prevalence, correlates, disability, and comorbidity of DSM-IV borderline personality disorder: results from the wave 2 National Epidemiologic Survey on alcohol and related conditions. J Clin Psychiatry 69:533–545CrossRefGoogle Scholar
  13. Hajihosseini A, Holroyd CB (2013) Frontal midline theta and N200 amplitude reflect complementary information about expectancy and outcome evaluation. Psychophysiology 50:550–562. CrossRefGoogle Scholar
  14. HajiHosseini A, Rodriguez-Fornells A, Marco-Pallares J (2012) The role of beta-gamma oscillations in unexpected rewards processing. Neuroimage 60:1678–1685. CrossRefGoogle Scholar
  15. Hauser TU, Hunt LT, Iannaccone R, Walitza S, Brandeis D, Brem S, Dolan RJ (2015) Temporally dissociable contributions of human medial prefrontal subregions to reward-guided. Learn J Neurosci 35:11209–11220. CrossRefGoogle Scholar
  16. Heinrich H, Busch K, Studer P, Erbe K, Moll GH, Kratz O (2014) EEG spectral analysis of attention in ADHD: implications for neurofeedback training? Front Hum Neurosci 8:611. CrossRefGoogle Scholar
  17. Herman JL, Perry C, Van der Kolk BA (1989) Childhood trauma in borderline personality disorder. Am J Psychiatry 146:490CrossRefGoogle Scholar
  18. Holroyd CB, Coles MGH (2002) The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol Rev 109:679–709. CrossRefGoogle Scholar
  19. Kjaer J, Biskin R, Vestergaard C, Munk-Jørgensen P (2015) A nationwide study of mortality in patients with borderline personality disorder. Eur Psychiatry 30:202CrossRefGoogle Scholar
  20. Knutson B, Adams CM, Fong GW, Hommer D (2001) Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci 21:RC159CrossRefGoogle Scholar
  21. Lancaster JL et al (2000) Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 10:120–131CrossRefGoogle Scholar
  22. Lee SH, Park Y, Jin MJ, Lee YJ, Hahn SW (2017) Childhood trauma associated with enhanced high frequency band powers and induced subjective inattention of adults. Front Behav Neurosci 11:148. CrossRefGoogle Scholar
  23. Leicht G, Troschutz S, Andreou C, Karamatskos E, Ertl M, Naber D, Mulert C (2013) Relationship between oscillatory neuronal activity during reward processing and trait impulsivity and sensation seeking. PLoS ONE 8:e83414. CrossRefGoogle Scholar
  24. Lenzenweger MF, Lane MC, Loranger AW, Kessler RC (2007) DSM-IV personality disorders in the National Comorbidity Survey. Replication Biol Psychiatry 62:553–564. CrossRefGoogle Scholar
  25. Marco-Pallares J, Cucurell D, Cunillera T, Garcia R, Andres-Pueyo A, Munte TF, Rodriguez-Fornells A (2008) Human oscillatory activity associated to reward processing in a gambling task. Neuropsychologia 46:241–248. CrossRefGoogle Scholar
  26. Marin RS (1991) Apathy: a neuropsychiatric syndrome. J Neuropsychiatry Clin Neurosci 3:243–254. CrossRefGoogle Scholar
  27. Mazziotta J et al (2001) A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos Trans R Soc Lond B Biol Sci 356:1293–1322. CrossRefGoogle Scholar
  28. Mobascher A et al (2009) Fluctuations in electrodermal activity reveal variations in single trial brain responses to painful laser stimuli–a fMRI/. EEG Study Neuroimage 44:1081–1092. CrossRefGoogle Scholar
  29. Montgomery SA, Åsberg M (1979) A new depression scale designed to be sensitive to change. Br J Psychiatry 134:382–389CrossRefGoogle Scholar
  30. Morey RD (2008) Confidence intervals from normalized data: a correction to Cousineau (2005). Reason 4:61–64Google Scholar
  31. Mulert C et al (2004) Integration of fMRI and simultaneous EEG: towards a comprehensive understanding of localization and time-course of brain activity in target detection. Neuroimage 22:83–94. CrossRefGoogle Scholar
  32. Nieuwenhuis S, Slagter HA, von Geusau NJ, Heslenfeld DJ, Holroyd CB (2005) Knowing good from bad: differential activation of human cortical areas by positive and negative outcomes. Eur J Neurosci 21:3161–3168. CrossRefGoogle Scholar
  33. Olbrich S, Mulert C, Karch S, Trenner M, Leicht G, Pogarell O, Hegerl U (2009) EEG-vigilance and BOLD effect during simultaneous EEG/fMRI measurement. Neuroimage 45:319–332. CrossRefGoogle Scholar
  34. Paret C, Hoesterey S, Kleindienst N, Schmahl C (2016) Associations of emotional arousal, dissociation and symptom severity with operant conditioning in borderline personality disorder. Psychiatry Res 244:194–201. CrossRefGoogle Scholar
  35. Pascual-Marqui RD (2002) Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24 Suppl D:5–12Google Scholar
  36. Peters JR, Upton BT, Baer RA (2013) Brief report: relationships between facets of impulsivity and borderline personality features. J Pers Disord 27:547–552. CrossRefGoogle Scholar
  37. Philipsen A et al (2009) Borderline typical symptoms in adult patients with attention deficit/hyperactivity disorder. Atten Defic Hyperact Disord 1:11–18. CrossRefGoogle Scholar
  38. Pornpattananangkul N, Nusslock R (2016) Willing to wait: elevated reward-processing EEG activity associated with a greater preference for larger-but-delayed rewards. Neuropsychologia 91:141–162. CrossRefGoogle Scholar
  39. Schuermann B, Kathmann N, Stiglmayr C, Renneberg B, Endrass T (2011) Impaired decision making and feedback evaluation in borderline personality disorder. Psychol Med 41:1917–1927. CrossRefGoogle Scholar
  40. Schultz W (2006) Behavioral theories and the neurophysiology of reward. Annu Rev Psychol 57:87–115. CrossRefGoogle Scholar
  41. Sheehan D et al (1998) The Mini-International Neuropsychiatric Interview (MINI): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 59:22Google Scholar
  42. Stiglmayr CE, Shapiro DA, Stieglitz RD, Limberger MF, Bohus M (2001) Experience of aversive tension and dissociation in female patients with borderline personality disorder—a controlled study. J Psychiatr Res 35:111–118CrossRefGoogle Scholar
  43. Taber KH, Black DN, Porrino LJ, Hurley RA (2012) Neuroanatomy of dopamine: reward and addiction. J Neuropsychiatry Clin Neurosci 24:1–4. CrossRefGoogle Scholar
  44. Threadgill AH, Gable PA (2018) Resting beta activation and trait motivation: neurophysiological markers of motivated motor-action preparation. Int J Psychophysiol 127:46–51. CrossRefGoogle Scholar
  45. van Asselt AD, Dirksen CD, Arntz A, Severens JL (2007) The cost of borderline personality disorder: societal cost of illness in BPD-patients. Eur Psychiatry 22:354–361. CrossRefGoogle Scholar
  46. Vega D, Soto A, Amengual JL, Ribas J, Torrubia R, Rodriguez-Fornells A, Marco-Pallares J (2013) Negative reward expectations in borderline personality disorder patients: neurophysiological evidence. Biol Psychol 94:388–396. CrossRefGoogle Scholar
  47. Volkow ND, Wang GJ, Fowler JS, Tomasi D, Telang F (2011) Addiction: beyond dopamine reward circuitry. Proc Natl Acad Sci USA 108:15037–15042. CrossRefGoogle Scholar
  48. Wittchen H, Zaudig M, Fydrich T (1997) Structured clinical interview for DSM-IV. Hogrefe, GöttingenGoogle Scholar
  49. Yaple Z, Martinez-Saito M, Novikov NA, Altukhov D, Shestakova A, Klucharev V (2018) Power of feedback-induced beta oscillations reflect omission of rewards: evidence from an EEG gambling study. Front Neurosci 12:776CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Paul Alexander Schauer
    • 1
  • Jonas Rauh
    • 1
  • Gregor Leicht
    • 1
  • Christina Andreou
    • 1
    • 2
  • Christoph Mulert
    • 1
    • 3
    Email author
  1. 1.Psychiatry Neuroimaging Branch, Department of Psychiatry and PsychotherapyUniversity Medical Center Hamburg EppendorfHamburgGermany
  2. 2.Center for Gender Research and Early DetectionUniversity of Basel Psychiatric ClinicsBaselSwitzerland
  3. 3.Department of Psychiatry and Psychotherapy, UKGMJustus-Liebig University GiessenGiessenGermany

Personalised recommendations